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ABSTRACT

Drought is one of the complex natural hazards having multi-dimensional harmful impacts on agriculture
and economy. Evapotranspiration is a good indicator of crop water stress, therefore, an
evapotranspiration-based index can be used to monitor the agricultural drought. Standardized Evaporative
Drought Index (sEDI) is such an index which is derived from the standardization of the Evaporative
Drought Index (EDI) over time. EDI is based on the ratio of actual to potential evapotranspiration. The
value of EDI increases with the increase in crop water stress. In this study, sEDI was computed from the
MODIS actual and potential evapotranspiration data at 1 km spatial resolution and 16-days temporal
interval during kharif crop season over India from 2001 to 2021. The Mann-Kendall trend analysis was
also performed for each 16-day time period of the kharif crop season at 10% level of significance. It
was found that the sEDI was accurately able to capture the spatiotemporal variation of the historical
agricultural drought events over India. Most of the net sown area (64.9 – 85%) didn’t show any trend in
sEDI during kharif crop season, while significant increasing as well as decreasing trend was found in
approximately 0.3 – 15.7% and 2.0 – 34.8% percentage of net sown area across all the time periods,
respectively. An increasing trend was mainly found in the southern and eastern parts of India including
Gujarat during the early and mid-phase of kharif crop season, whereas, the late-phase had most of the
area showing a decreasing trend in drought. This study clearly brought out the spatiotemporal variation
of agricultural drought at a finer spatial scale and could help in prioritizing the appropriate water
management strategies to mitigate the effects of drought in India.
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deficiency in rainfall which causes depletion in soil
moisture, and the decline in surface and ground water
levels which subsequently affects crop growth and
yield. The prolonged shortage of rainfall can create
socio-economic problems like lack of drinking water,
death of animals and humans, migration, etc. (Wilhite
and Glantz, 1985; Mishra and Singh, 2010, 2011).
Drought has been categorized into four types i.e.,
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Introduction
Drought is a complex natural hazard which has

numerous adverse effects on agriculture, economy,
industries, ecology, life and livelihoods of humans,
etc. (Wilhite et al., 2007; Edwards et al., 2019;
Parsons et al., 2019). Drought is initiated by the
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meteorological, agricultural, hydrological and socio-
economical (Wilhite and Glantz, 1985). Agricultural
drought is referred to as a condition initiated by
failure in precipitation leading to the decline in soil
moisture and consequent crop failure without any
reference to surface water resources. The decline in
soil moisture depends on several meteorological and
hydrological factors along with differences between
actual evapotranspiration and potential evapo-
transpiration (Mishra and Singh, 2010). India is
amongst the most vulnerable drought-prone countries
in the world because drought has been reported at
least once every three years in the last five decades
in one or other parts of India (Manual of Drought
Management, 2016). Out of 3.29 million km2 of
geographical area in India, about 1.07 million km2

of land is subjected to different degrees of water stress
and drought conditions (Mishra and Desai, 2005).
In India, drought areas are mainly confined to the
southern and western parts of the country. The
frequency of occurrence of drought in India is
increasing (FAO, 2002). About 55% of the net sown
area in India is under rainfed agriculture which is
most prone to agricultural drought (NRAA, 2012).

Several indices have been developed by various
researchers across the world to monitor the progress
and severity of drought. Traditionally, the drought
was monitored using indices like rainfall deficit,
Standardized Precipitation Index (McKee et al.,
1993), Palmer Drought Severity Index (Palmer,
1965), Crop Moisture Index (Palmer, 1968), Crop
Water Stress Index (Jackson et al., 1988), etc. With
the advancement in remote sensing technologies,
numerous indices were developed based on remote
sensing data as it provides better spatial and temporal
information in less time, therefore, increasing the
possibility of near real-time monitoring of
agricultural drought conditions. These indices are
based on the detection of vegetation conditions and
their deviation due to drought. The most prominent
vegetation index is certainly the Normalized
Difference Vegetation Index (NDVI; Tucker, 1979)
which was first applied to drought monitoring by
Tucker and Choudhury (1987). This study triggered
several drought monitoring indices like the
Vegetation Condition Index (VCI; Kogan, 1990,
1995), the anomaly of the NDVI called NDVIA
(Anyamba et al., 2001), or the Standardized

Vegetation Index SVI (Peters et al., 2002). In addition
to using optical data, several other indices were
developed by considering data of other bands to
detect drought like Temperature Condition Index
(TCI, Kogan, 1995), Vegetation Temperature Index
(VTI) or Vegetation Health Index (VHI) by Kogan
(1997, 2000), Vegetation Index/Temperature
Trapeziod (VITT, Moran et al., 1994), Vegetation
Temperature Condition Index (VTCI, Wan et al.,
2004), Temperature Vegetation Dryness Index
(TVDI, Sandholt et al., 2002), Normalized
Difference Water Index (NDWI, Gao, 1996;
Chakraborty and Sehgal, 2010), etc.

Evapotranspiration, a key component of the land
surface water budget and an indicator linked to
vegetation drought status, is a significant process that
drives energy and water exchange between the
atmosphere and land surface (Priestley and Taylor,
1972; Wang et al., 2007). When drought occurs, the
stomata of stressed plants close to minimize water
loss by transpiration, which leads to decreased latent
heat flux; in order to keep an energy balance, sensible
heat flux may increase. As a result of this process,
leaf temperature will ultimately increase (McVicar
and Jupp 1998). Vicente-Serrano et al. (2010)
proposed Standardized Precipitation Evapo-
transpiration Index (SPEI) which is computationally
analogous to SPI, but it used deficit i.e. (P-PET)
instead of only P i.e., precipitation as a variable. Yao
et al. (2010) proposed an Evaporative Drought Index
(EDI) to monitor droughts over the conterminous
United States. They used Moderate Resolution
Imaging Spectroradiometer (MODIS) and National
Centers for Environmental Prediction–Department
of Energy Atmospheric Model Intercomparison
Project Reanalysis II (NCEP–DOE II) data, and
statistical methods to estimate the ET and PET at 4-
km spatial resolution and a monthly time step, and
used the deviation of the ET/PET ratio from unity to
define the EDI. The integrated remote sensing data
in the EDI are sensitive to the vegetation drought
response and enhance EDI capabilities for drought
monitoring and detection. The EDI cannot easily
quantify the wetness or dryness of a region in a given
monthly or yearly period across various regions.
Therefore, Zhang et al. (2019) did the standardization
of EDI over time so that it could be used to evaluate
the drought condition across different temporal
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periods and agro-climatic regions. This index is
known as the Standardized Evaporative Drought
Index (sEDI). He found that the sEDI correlates well
with past drought events and inter-annual grain crop
yields in Northeast China. In this study, we have
computed sEDI for the years 2001 to 2021 for the
kharif crop season over India and its spatiotemporal
trend analysis using Mann-Kendall test was
performed. This study may be helpful in
understanding the variation of sEDI over different
parts of India in space and time, and its usefulness in
evaluating the agricultural drought conditions over
India.

Material and Methods

Data
In this study, actual and potential

evapotranspiration (ET) data from MODIS Terra
satellite product i.e., MOD16A2GF from NASA was
used. The MOD16A2GF is the year-end gap-filled
8-day composite evapotranspiration dataset in which
the poor quality of pixels has been rectified. The
detailed algorithm for the development of this
product is given by Running et al. (2019). This
product provides data layers of total actual and
potential evapotranspiration in terms of kg/m2 over
8-days at 500 m spatial resolution. The data was
downloaded, mosaicked for the Indian region and
converted to GeoTIFF format for the year 2001 to
2021 using the ‘MODIStsp’ package (Busetto and
Ranghetti, 2016) written in free and open-source R-
Studio software. The data were resampled to 1 km
spatial resolution using the nearest neighbourhood
technique. The sum of two consecutive 8-day ET
products was taken to produce a 16-day ET product
as we intended to compute Standardized Evaporative
Drought Index (sEDI) at 16-days temporal interval
and 1 km spatial resolution. The crop mask derived
from the Land Cover Type-1 layer of MODIS land
use land cover product ‘MCD12Q1’ for the year 2010
was applied so that the pixels pertaining only to the
crop cultivated areas are retained for agricultural
drought assessment.

Standardized Evaporative Drought Index

Standardized Evaporative Drought Index (sEDI)
given by Zhang et al. (2019) is computed from the

Evaporative Drought Index (EDI). EDI was proposed
by Yao et al. (2010, 2011). It is based on the concept
that actual evapotranspiration (AET) is closer to the
potential evapotranspiration (PET) when there is
abundant water supply to the crops, while AET is
less than PET in case of lower water availability
indicating crop water stress. Thus, EDI is computed
from AET and PET to represent crop water stress
using the following formula:

(1)

The value of EDI varies from 0 to 1. The higher
value of EDI indicates higher water stress and vice-
versa. EDI has been used by several researchers for
monitoring agricultural drought (Zhao et al., 2017;
Zhang et al., 2019; Liu et al., 2022). The
standardization of EDI is done to derive anomalies
in EDI over a particular region with respect to the
whole temporal period, known as Standardized
Evaporative Drought Index (sEDI). The sEDI helps
in comparing the drought severity conditions over
different agro-climatic regions by considering the
climatic variability. It can be computed by taking
the z-score of EDI as given in the following formula:

(2)

Here,  and σEDI are temporal mean and
temporal standard deviations of EDI for a given
period, respectively. Higher the value of sEDI, more
will be the drought severity. The sEDI has been
classified for agricultural drought severity using the
classification scheme given in Table 1.

The sEDI has been computed for the kharif crop
season over India at a 16-days temporal interval and

Table 1. Agricultural drought severity classification
of sEDI (Zhang et al., 2019)

sEDI values Categories

< -1.0 No drought
0 to -1.0 Near-normal
0 to 1.0 Mild drought
1.0 to 1.5 Moderate drought
1.5 to 2.0 Severe drought
> 2.0 Extreme drought
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1 km spatial resolution. The kharif crop season
corresponds to summer monsoon season in India in
which crop sowing starts from June onwards and is
harvested by October end. There are ten time periods
each of 16 days during the kharif crop season for
which sEDI were computed from the year 2001 to
2021. These time periods are given in Table 2. The
time period from June to July are considered in early
kharif season, August to mid-September in mid kharif
season and mid-September to October in late kharif
season.

Agricultural drought trend analysis

Mann-Kendall (MK) test was used to estimate
trends in agricultural drought events in terms of
trends in sEDI. Mann-Kendall trend test (Mann,
1945; Kendall, 1955) is a non-parametric, rank-based
correlation test which is used for the detection of
monotonic upward or downward trends in time-series
data. MK test is easy to perform and is robust to the
presence of outliers or missing data. The null
hypothesis of the MK test is the absence of trend
while the alternate hypothesis is presence of trend.
In MK test, each value in the time series data is
compared to the other values sequentially. The
expression of MK test (S) statistic is:

(3)

where, n is the length of time-series data, xj and xk

are two sequential values of data. The function
sign(xj – xk) gets the values as expressed below:

 (4)

 (5)

Here, Var(S) is the variance of the dataset. The Z-
statistic is computed as follows:

(6)

The positive value of standardized Z statistic denotes
an increasing trend whereas the negative value
denotes decreasing trend. The Kendall Tau (τ) or
Kendall rank correlation coefficient was computed
as follows:

(7)

where, D is the total number of pair combinations
computed using the following equation:

(8)

Kendall’s Tau measures the monotony of the
slope. It’s value ranges from -1 to +1 where a positive
value denotes an increasing trend and a negative
value denotes decreasing trend. The MK test was
performed on the time-series data of sEDI for each
time period (Table 2) ranging from 2001 to 2021.
Kendall’s Tau was computed for each pixel for a
particular time period was statistically evaluated at
10% level of significance. For performing MK test
over the raster dataset of sEDI, ‘raster’ (Hijmans et
al., 2015), ‘Kendall’ (McLeod, 2015), and ‘trend’
(Pohlert et al., 2016) packages of R software was
used.

Results and Discussion

Spatio-temporal variations in sEDI

The sEDI was computed from the year 2001 to
2021 at 1 km spatial resolution and 16 days’ temporal

Table 2. Time periods for which sEDI was computed

Time Period Temporal Range

I 25th May to 9th June
II 10th to 25th June
III 26th June to 11th July
IV 12th to 27th July
V 28th July to 12th August
VI 13th to 28th August
VII 29th August to 13th September
VIII 14th to 29th September
IX 30th September to 15th October
X 16th to 31st October
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interval during the kharif crop season for each time
period (Table 2). The maps of sEDI for the year 2015
(known drought-affected year) and 2021 (known
non-drought year) for each time period are shown in
the figure 1 and 2, respectively. The year-wise
variation of the percentage of area affected by the
different categories of agricultural drought all over
the India during kharif crop season is depicted in
figure 3. It is clear from figure 3 that the years 2002,
2009, 2012, 2014 and 2015 were mostly affected by
the agricultural drought over large area, whereas the
years 2003, 2013, 2020, and 2021 less area was
affected. The maximum area under the extreme
drought category was found in the year 2002 (7.4%)

followed by the years 2015 (6.7%) and 2014 (5.1%),
respectively. A similar pattern was found in the severe
drought category where the year 2002, 2015 and
2014 showed 12.0%, 10.1%, and 8.1% area affected,
respectively. The percentage of areas affected by the
moderate drought category was maximum in the year
2002 (20.2%) followed by 2015 (19.5%), 2009
(16.7%), 2014 (16.5%), and 2012 (11.5%),
respectively. However, the maximum area affected
by mild drought was in the year 2012 (53.8%)
followed by 2009 (53.1%). The maximum percentage
of cultivated area under both the near-normal and
no-drought categories was found in the year 2021
(77.7%) followed by 2020 (75.1%), 2013 (66.9%),

Fig. 2. Maps showing spatial variation of sEDI Index during each time period of the kharif crop season for the
year 2021 over India

Fig. 1. Maps showing spatial variation of sEDI Index during each time period of the kharif crop season for the
year 2015 over India
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and 2003 (64.0%), respectively. From the maps of
sEDI of different years, it was found that the states
of Rajasthan, Karnataka, Maharashtra, and Andhra
Pradesh were most frequently affected by the drought
as compared to the other states.

Spatio-temporal trend in sEDI

The pixel-wise Mann-Kendall trend analysis was
performed in terms of Kendall Tau (τ) on the 21
years’ data of the sEDI i.e., from the years 2001 to
2021, to detect the presence of trend in each time
period of the kharif crop season. The positive value
of Kendall’s Tau represents an increasing trend while
the negative value depicts a decreasing trend. The
pixels whose trend value was significant at the 10%
level of significance (p < 0.1), were only considered
in this study. The pixels whose values were not found
significant were considered to have no trend (NT).
The maps of the significant values (p < 0.1) of
Kendall’s Tau (τ) for each time period of the kharif
crop season are depicted in figure 4. The percentage
of net sown area having increasing trend (IT),
decreasing trend (DT), and no trend (NT) in each
time period of the kharif crop season of each state of
India is shown in Table 3. The presence of an
increasing trend in sEDI depicts the increase in the
crop water stress or dryness over time whereas

decreasing trend denotes decrease in crop water stress
or increase in wetness.

The Table 3 shows that during time period I, the
states of Andhra Pradesh (45.1%), Mizoram (26.2%)
and Karnataka (24.6%) have the maximum
percentage of net cultivated area showing increasing
trend in sEDI, whereas decreasing trend was found
mostly in the state of Himachal Pradesh (82.4%),
Uttarakhand (69%), Jammu & Kashmir (60.4%),
Arunachal Pradesh (49.6%), Uttar Pradesh (42.9%),
Punjab (38.1%), and West Bengal (37.4%). Similar
pattern of increasing trend was found during time
period II for the states of Andhra Pradesh (29.8%),
Mizoram (65.6%) and Karnataka (50.9%), but Tamil
Nadu (68.8%) was found to have maximum
percentage of crop area with increasing drought
trend. The decreasing trend during time period II was
found mostly in the states of Jammu & Kashmir
(78%), Himachal Pradesh (77.7%), Ladakh (59.3%),
Haryana (51.8%), Delhi (45.5%), Arunachal Pradesh
(40.8%), Punjab (32.9%), and Uttarakhand (28.2%).
The percentage of net cultivated area having
significant positive trend has increased in the time
period II as compared to time period I. However, the
spatial pattern of trend changed during the time
period III. During time period III, the maximum
percentage of net sown area having increasing trend

Fig. 3. Yearly variation of percentage of crop area affected by different categories of agricultural drought as
deciphered from sEDI during kharif crop season in India
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was found in Gujarat (59.9%), followed by Odisha
(57.7%), West Bengal (47.1%), and Chhattisgarh
(34.8%). The states of Ladakh (87.9%), Arunachal
Pradesh (70.9%), and Assam (34%) had maximum
area under decreasing trend in the time period III.
During the time period IV, the States present in the
eastern part of the India showed increasing trend i.e.,
Odisha (76.8%), West Bengal (57.8%), Chhattisgarh
(42.5%), Jharkhand (23.8%), and Andhra Pradesh
(19.2%), while decreasing trend were found in
Jammu & Kashmir (69.3%), Ladakh (54.9%),
Himachal Pradesh (44.5%), and Arunachal Pradesh
(34.6%). For the time period V, the States of Gujarat
(37.5%) and Tamil Nadu (20.3%) also had most of
the net sown area showing increasing trend along
with West Bengal (46.7%), Chhattisgarh (43.4%),
Andhra Pradesh (42.8%), and Odisha (83%). The
states showing decreasing trend during time period
V are Jammu & Kashmir (64.9%), Ladakh (61.5%),
Assam (57.6%), Rajasthan (52.3%), Uttarakhand
(50.3%), Arunachal Pradesh (46.4%), Sikkim (40%),
and Himachal Pradesh (39%), and Uttar Pradesh
(37.1%). The percentage of net sown area having
both significant increasing and decreasing trend in
sEDI has been increased in the time period V as
compared to the previous four time periods. The total
area showing positive trend has decreased in the time
period VI as compared to time period V, and has been

limited to the eastern part of India i.e., Odisha
(55.1%), Chhattisgarh (50.5%), Jharkhand (47.3%),
and West Bengal (41.9%). However, the patterns of
the states showing negative trend during the time
period VI remained quite similar to that of V i.e.,
Jammu & Kashmir (61.7%), Ladakh (40.7%), Punjab
(54%), Haryana (45.4%), Himachal Pradesh (41.9%),
Rajasthan (40.7%), Assam (47.3%), Arunachal
Pradesh (35.3%), Uttarakhand (35.1%), and Uttar
Pradesh (25.9%). During time period VII, the area
showing significant increasing trend has further
decreased whereas the area of decreasing trend has
increased. The increasing trend was found mostly in
the states of West Bengal (30.5%), Odisha (20.9%),
and Jharkhand (8.8%), while the decreasing trend
was found in Rajasthan (94.2%), Punjab (88.5%),
Haryana (81.3%), Jammu & Kashmir (75.1%),
Ladakh (73.6%), Himachal Pradesh (54.9%), Assam
(49.1%), Uttar Pradesh (37.5%), Gujarat (33.8%),
and Uttarakhand (33%). During the time period VIII,
the area showing positive trend has further decreased
and only the Mizoram state showed 34.4% of net
cultivated area having increasing trend while the
percentage of area in the other states were less than
10%. The area showing significant decreasing trend
of sEDI during the time period VIII has further
increased with most parts of the India except southern
India showed negative trend. The maximum

Fig. 4. The spatio-temporal variation of significant values of Kendall’s Tau (τ) (p < 0.1) of sEDI for each time
period of the kharif crop season over India
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Table 3. Percentage of net sown area showing increasing trend (IT), decreasing trend (DT), and no trend (NT) in
each time period of the kharif season in each state of India

State I II III IV V
IT DT NT IT DT NT IT DT NT IT DT NT IT DT NT

West Bengal 0.13 37.36 62.51 5.45 0.36 94.18 47.14 0.98 51.88 57.84 2.51 39.65 46.68 5.55 47.77
Delhi 0.00 24.07 75.93 0.00 45.47 54.53 0.00 0.00 100.00 0.00 1.65 98.35 0.00 11.11 88.89
Haryana 0.01 18.88 81.11 0.00 51.76 48.24 0.97 0.06 98.97 0.00 20.82 79.18 0.01 29.87 70.13
Jharkhand 0.00 26.82 73.17 0.17 0.00 99.83 10.45 0.01 89.55 23.84 0.04 76.12 11.76 0.79 87.44
Karnataka 24.59 0.08 75.33 50.87 0.01 49.12 6.73 0.11 93.16 0.01 0.23 99.77 8.08 0.08 91.84
Kerala 3.35 3.89 92.75 48.00 1.85 50.15 24.97 3.04 71.99 3.65 2.99 93.36 17.48 2.91 79.62
Madhya Pradesh 0.00 3.63 96.37 0.00 0.12 99.88 0.77 0.03 99.21 0.25 0.10 99.65 0.36 9.83 89.81
Maharashtra 0.03 1.82 98.15 0.91 0.01 99.09 8.48 0.17 91.35 5.25 0.44 94.31 10.69 0.07 89.24
Tamilnadu 6.68 1.00 92.32 68.78 0.23 30.99 12.14 0.75 87.11 7.11 0.17 92.72 20.26 0.09 79.64
Chhattisgarh 0.07 3.50 96.43 0.01 0.00 99.99 34.78 0.00 65.22 42.49 0.03 57.48 43.43 2.26 54.31
Telangana 3.16 0.01 96.83 1.68 0.01 98.31 0.11 0.31 99.58 5.54 0.02 94.44 32.45 0.02 67.53
Andhra Pradesh 45.12 0.07 54.81 29.79 0.01 70.20 4.54 0.22 95.24 19.16 0.09 80.75 42.80 0.14 57.06
Goa 0.00 0.34 99.66 14.53 0.00 85.47 0.00 7.01 92.99 0.00 10.77 89.23 2.56 2.05 95.38
Himachal Pradesh 0.02 82.41 17.56 0.00 77.66 22.34 0.05 13.75 86.20 0.00 44.54 55.46 0.05 39.01 60.95
Punjab 0.04 38.08 61.89 0.06 32.93 67.01 23.67 0.33 76.00 0.00 25.65 74.35 0.12 27.22 72.67
Rajasthan 1.47 0.48 98.04 0.00 11.87 88.13 0.52 0.07 99.41 0.00 11.87 88.13 0.00 52.26 47.74
Gujarat 1.04 2.20 96.76 10.31 0.01 89.68 59.88 0.00 40.12 0.18 0.03 99.79 37.51 0.19 62.30
Uttarakhand 0.00 69.00 31.00 0.00 28.20 71.80 0.04 1.79 98.16 0.00 10.61 89.39 0.03 50.31 49.66
Uttar Pradesh 0.00 42.95 57.05 0.00 9.11 90.89 0.01 6.68 93.31 0.00 12.34 87.66 0.00 37.11 62.89
Sikkim 0.00 6.67 93.33 0.00 0.00 100.00 0.00 6.67 93.33 0.00 26.67 73.33 0.00 40.00 60.00
Assam 1.91 21.34 76.75 7.56 12.85 79.59 0.41 33.97 65.62 0.69 22.89 76.42 0.05 57.59 42.37
Arunachal Pradesh 0.89 49.56 49.56 0.70 40.79 58.51 0.00 70.90 29.10 0.64 34.56 64.80 0.44 46.44 53.11
Manipur 0.83 1.66 97.52 2.95 0.31 96.74 0.57 2.02 97.41 0.16 22.72 77.12 0.16 30.69 69.15
Mizoram 26.23 1.64 72.13 65.57 1.64 32.79 29.51 1.64 68.85 6.56 1.64 91.80 1.64 6.56 91.80
Tripura 2.88 3.73 93.39 11.13 0.26 88.61 18.26 0.13 81.61 12.76 4.19 83.05 4.06 5.37 90.58
Meghalaya 0.48 11.70 87.82 10.26 0.16 89.58 0.96 1.60 97.44 2.88 5.13 91.99 0.64 17.31 82.05
Bihar 0.00 22.14 77.86 0.48 0.10 99.42 0.36 2.16 97.49 0.95 3.90 95.15 0.02 16.08 83.90
Ladakh 0.00 16.48 83.52 0.00 59.34 40.66 0.00 87.91 12.09 0.00 54.95 45.05 2.20 61.54 36.26
Jammu & Kashmir 0.09 60.38 39.53 0.01 78.00 21.99 0.09 24.51 75.40 0.13 69.27 30.60 0.12 64.91 34.97
Odisha 0.14 14.12 85.74 4.60 0.00 95.40 57.66 0.15 42.19 76.75 0.05 23.21 83.00 0.08 16.93
Total 4.57 12.46 82.98 9.52 5.48 85.00 12.32 1.96 85.71 9.79 5.31 84.90 15.72 15.45 68.83

VI VII VIII IX X
IT DT NT IT DT NT IT DT NT IT DT NT IT DT NT

West Bengal 41.94 6.06 52.00 30.49 5.55 63.97 2.25 10.94 86.81 0.36 19.66 79.97 0.68 14.79 84.53
Delhi 0.00 8.23 91.77 0.00 31.28 68.72 0.00 26.34 73.66 0.00 37.86 62.14 1.65 35.60 62.76
Haryana 0.00 45.42 54.58 0.00 81.30 18.70 0.00 59.10 40.90 0.02 56.72 43.26 1.36 46.26 52.37
Jharkhand 47.28 0.12 52.60 8.83 0.91 90.26 0.03 3.71 96.27 0.03 4.76 95.20 0.07 0.37 99.55
Karnataka 0.17 7.93 91.90 0.00 10.89 89.11 0.21 4.57 95.22 0.04 9.79 90.18 0.03 12.02 87.94
Kerala 2.93 7.03 90.04 0.64 6.42 92.94 1.30 3.83 94.88 1.69 3.96 94.35 7.88 3.77 88.35
Madhya Pradesh 4.49 3.54 91.97 0.03 27.18 72.79 0.00 42.32 57.68 0.11 16.81 83.08 0.10 31.98 67.91
Maharashtra 2.97 0.67 96.37 0.06 10.45 89.49 0.01 26.60 73.39 0.02 25.03 74.94 0.05 47.27 52.68
Tamilnadu 1.99 1.45 96.56 0.24 1.29 98.46 2.66 0.10 97.24 5.31 0.16 94.53 5.78 0.11 94.11
Chhattisgarh 50.46 0.20 49.34 0.48 10.22 89.30 0.01 62.33 37.67 0.05 48.80 51.15 0.08 8.23 91.68
Telangana 3.29 0.66 96.05 0.13 6.13 93.75 0.01 19.40 80.58 0.02 17.19 82.80 0.11 6.35 93.54
Andhra Pradesh 7.62 1.05 91.33 1.23 2.57 96.20 1.04 4.36 94.59 0.69 3.46 95.85 0.83 1.42 97.75

Contd...
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Goa 0.00 11.45 88.55 0.00 8.55 91.45 0.34 3.25 96.41 0.17 35.56 64.27 0.00 68.21 31.79
Himachal Pradesh 0.02 41.89 58.08 0.00 54.89 45.11 0.05 74.46 25.49 0.12 87.60 12.28 0.31 73.66 26.04
Punjab 0.02 54.03 45.95 0.02 88.47 11.51 0.02 87.28 12.70 0.01 91.09 8.90 0.32 77.51 22.17
Rajasthan 0.00 40.71 59.29 0.00 94.22 5.78 0.00 90.00 10.00 0.01 75.30 24.69 0.00 83.88 16.12
Gujarat 3.24 0.72 96.03 0.00 33.79 66.20 0.00 36.80 63.19 0.01 55.35 44.63 0.01 88.82 11.17
Uttarakhand 0.04 35.08 64.87 0.01 33.01 66.97 0.09 33.44 66.48 0.86 38.45 60.69 2.35 29.18 68.48
Uttar Pradesh 0.12 25.86 74.03 0.00 37.47 62.53 0.00 27.43 72.57 0.12 25.65 74.23 0.41 10.19 89.40
Sikkim 0.00 20.00 80.00 0.00 0.00 100.00 0.00 60.00 40.00 0.00 40.00 60.00 0.00 46.67 53.33
Assam 0.02 47.31 52.67 0.05 49.11 50.85 1.08 41.78 57.13 1.05 35.36 63.59 1.42 45.21 53.37
Arunachal Pradesh 0.38 35.26 64.36 0.51 35.77 63.72 0.13 66.77 33.10 2.48 29.10 68.42 3.43 51.72 44.85
Nagaland 0.29 18.57 81.14 0.00 7.71 92.29 2.29 12.29 85.43 3.43 9.71 86.86 2.00 33.71 64.29
Manipur 1.09 9.89 89.03 1.86 4.14 94.00 6.52 4.19 89.29 1.76 5.54 92.70 0.72 8.95 90.32
Mizoram 1.64 1.64 96.72 3.28 1.64 95.08 34.43 1.64 63.93 8.20 4.92 86.89 4.92 1.64 93.44
Tripura 3.40 12.50 84.10 3.14 5.17 91.69 8.64 5.24 86.13 1.77 12.70 85.54 1.31 18.46 80.24
Meghalaya 0.00 18.75 81.25 0.32 15.87 83.81 0.80 14.90 84.29 1.12 20.35 78.53 0.64 32.53 66.83
Bihar 4.55 10.42 85.03 6.40 6.75 86.85 0.02 26.07 73.91 0.04 31.35 68.61 0.14 10.82 89.04
Ladakh 5.49 40.66 53.85 1.10 73.63 25.27 4.40 17.58 78.02 1.10 62.64 36.26 0.00 29.67 70.33
Jammu and 0.45 61.65 37.90 0.07 75.10 24.83 0.17 86.81 13.02 0.10 93.00 6.90 0.25 83.42 16.33
Kashmir
Odisha 55.12 0.32 44.56 20.93 1.37 77.70 0.34 27.45 72.21 0.03 38.73 61.25 0.08 15.08 84.83
Total 8.87 13.32 77.81 2.65 28.87 68.48 0.34 34.80 64.86 0.38 31.73 67.90 0.54 32.84 66.61

percentage of net sown area having negative trend
was found in Rajasthan (90%) followed by Punjab
(87.3%), Jammu & Kashmir (86.8%), Himachal
Pradesh (74.5%), Arunachal Pradesh (66.8%),
Chhattisgarh (62.3%), Sikkim (60%), Haryana
(59.1%), Madhya Pradesh (42.3%), Assam (41.8%),
Gujarat (36.8%), Uttarakhand (33.4%), Uttar Pradesh
(27.4%), and Bihar (26.1%). During time period IX,
all the states have less than 10% net cultivated area
showing positive trend while seven states have more
than 50% area showing negative trend. These states
are Jammu & Kashmir (93%), Punjab (91.1%),
Himachal Pradesh (87.6%), Rajasthan (75.3%),
Ladakh (62.6%), Haryana (56.7%), and Gujarat
(55.4%). Similarly, during time period X, all the
states have less than 10% of net sown area showing
positive trend whereas seven states with more than
50% of net sown area present in the northern and
north-western parts of India showing negative trend.

During all the time periods of the kharif crop
season, the percentage of net sown area showing no
trend was much higher (75%) than the area showing
positive (18%) or negative (7%) trend. In general,
the increasing trend is agricultural drought is seen in
about 8.8% of crop area during early season, about
9.3% of crop area during mid-season and about 0.5%
of crop area during late season. Along with that,

during all the time periods except time period V, the
percentage of area showing decreasing trend was
higher as compared to that of increasing trend.
Overall, we can conclude that during the month of
June, the states of Karnataka, Tamil Nadu and Andhra
Pradesh have a higher possibility of increase in the
dryness or crop water stress i.e., early season drought.
However, during the months of July and August, the
eastern states i.e., Odisha, West Bengal, Andhra
Pradesh, Telangana, Jharkhand, and Chhattisgarh,
along with Gujarat situated in western India are more
prone to dryness i.e., mid-season drought. However,
during the months of September and October, i.e.,
during the late kharif crop season, the trend in the
increase of dryness is almost negligible whereas most
of the states of India depicts decrease in dryness or
crop water stress i.e., late season drought. A lower
proportion of area showing increasing drought trend
implies the success of various irrigation scheme
undertaken under federal and States government
schemes over time. Still, there is more need for better
agricultural water management during the early and
mid-season droughts, especially in the southern and
eastern parts of India along with Gujarat state.

Summary and Conclusions

The spatio-temporal analysis of standardized
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Evaporative Drought Index, which is an
evapotranspiration-based index to measure the
severity of agricultural drought, was undertaken in
this study. It was found that the sEDI was able to
capture the spatial as well as temporal variations in
agricultural drought during kharif crop season over
India. The sEDI clearly showed that the years 2002,
2009, 2012, 2014 and 2015 were mostly affected by
the agricultural drought, whereas the years 2003,
2013, 2020, and 2021 were less affected, which
agrees with the drought declared by the government
agencies. The spatio-temporal trend analysis of sEDI
shows that in majority of the crop area (about 75%)
no significant trend in agricultural drought is found,
while increasing trend is seen in about 7% and
decreasing trend in about 18% area. During the early
kharif crop season (June, July), the southern states
of Karnataka, Andhra Pradesh and Tamil Nadu are
showing increase in the dryness or crop water stress
and should be prioritized for early season drought
interventions. During the mid-kharif crop season
(July-August), the increase in dryness was found in
the eastern states of India (West Bengal, Odisha,
Jharkhand, Chhattisgarh, Andhra Pradesh and
Telangana) along with Gujarat where mid-season
drought interventions should be emphasized.
However, during the late-kharif crop season
(September-October), most of the states show
decreasing trend in sEDI indicating decrease in the
late-season drought. The majority crop area showing
no trends in agricultural drought over the past twenty
years and only a smaller proportion of crop area
showing an increasing trend implies the success of
irrigation schemes introduced over the years,
especially, in rainfed area. The study has clearly
shown the usefulness of sEDI in monitoring
agricultural drought over India and based on its trend,
has identified areas which need to be prioritize for
better water management. This analysis can be further
used to accurately plan agricultural water
management practices so that the possibility of early
and mid-season drought can be reduced in the
identified areas.
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