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ABSTRACT

Estimation of nitrous oxide from across agri-horticultural system is a prerequisite for having an idea
about the climate change contribution at local levels. Understanding the ecological process occurred
during the food or fruit production to supply chain forms the basis of adaptation strategies. Soil physical
properties along with chemical properties and tillage types have tremendous influence on the nitrous
oxide (N,0) emission cycle. Biological activities significantly contribute in the emission process through
nitrification/de-nitrification alteration. Mitigation strategies should be evolved in such a way or scale so
that the quantity of N,O emission should be reduced making ecosystem safe and habitable. The present
work focused on study in smaller or larger units on N,O emission cycle. Zone specific emission factor

and effective soil determinants should be developed.
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Introduction

Global climate change along with related
factors is significantly changing the earth
ecosystem. The geological contribution and the
biogeochemistry were given maximum attention
to quantify the amount of each unit contributing
at local condition to the overall growth of green
house gases. Emission of nitrous oxide, nitric
oxide, methane, carbon dioxide, carbon
monoxide, etc. as well as depletion of ozone layer
needs to be quantified from food to supply chain
so as to alter the mitigation strategies. Repository
of research data across agri-horticultural
ecosystem suggested that each of the orchards has
tremendous contribution towards building up of
emission process; although there might be some
small contributions which may pile up over the
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decades or so (Dickinson et al., 2019; Masters,
2019). The status of mineralogical, hydrological
and environmental cycle determines the
emissivity and further process to follow
antagonistic or synergistic pathways over a period
of longer duration. Linn and Dornan (1984) nicely
described the role of water filled pores on the
emission of nitrous oxide production under tilled
and non-tilled conditions. Under moist and dry
condition with temperature and nitrate content,
variable nitric oxide emission (NO) was recorded
suggesting the determinant role of soil structure
on emission in tropical savannah soil (Cardenas
et al., 1993). Inubushi et al. (1999) explained the
interaction of salt type and concentration with soil
moisture on the N,0O emission and nitrogen
dynamics in Yellow soil and Andosol. It was
observed that drip irrigation system lowers down
the N,O emission from melon produce than
furrow system of irrigation with and without the
use of nitrogenous fertilizer. A range of 0.45 to
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0.92 kg N,O-N ha' was recorded across dry and
wet areas suggested the role of irrigation
scheduling in arid and semi-arid regions
(Sanchez-Martyn et al., 2008). A considerable
amount of annual N loss (0.8 to 10.0 and 11.0 to
34.4 kg N,O-N ha'! across replicates in fertilized
and grazing condition during 2002 and 2003) in
the form of N,O emission was also estimated from
the grassland in Ireland (Hyde et al., 2006).
Ravishankara et al. (2009) opined that being N,O
emission unregulated by the Montreal protocol, it
will have tremendous impact on the building up
in the atmosphere with detrimental role on O,
layer depletion. Ofcourse seasonal and region
specific variability in its emission may be
encountered as observed in almond orchards in
California; a narrow range of 0.53 to 0.65 kg
N,O-N ha'! year! with lower emission factor of
0.19 to 0.25 was recorded (Decock et al., 2017).
Similarly, Pang et al. (2009) observed 48.2, 36.8
and 31.9 pg N,O m? h! annual average emissions
from 0.5, 1.5 and 2.5 m apple tree row with
greater emission in summer months. Zhang et al.
(2019) reported that tropical regions having
grasslands and forest made significant
contribution towards global N,0O budgets with
average forests (3.62 Tg N yr!) and grasslands
(1.40 Tg N yr') emission. Generally, June to
November contributes more in the emission
inventory from forests while growing season had
significant addition in grasslands. The combined
effects of soil temperature and moisture showed a
variability pattern of N,O emission; a lower (0.22)
from ungrazed semi-arid steppe (Inner Mongolia,
China) < 0.67 (tropical rain forest, Queensland,
Australia) <0.96 kg N ha! yr! (temperate spruce
forest, Germany) was quantified (Luo et al.,
2013). Hassler et al. (2015) recorded reduced CO,
(107.2 to 115.7 mg C m? h') and methane
emission (-3.0 to -14.9 pg C m? h') in the oil
palm and rubber plantations than forest areas
suggested reduced soil organic matter build up
by reduced litter fall and reduced N build up in
soil. Statistically influences of biochar application
on the dynamics of soil parameters and emission
rates were also recorded. Use of nitrification
inhibitor is an example for restricting the process
and emission cycles. Based on three years’ field
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experimentation with rainfed barely grown in a
clayey loam texture soil under semiarid
Mediterranean climate, Abalos et al. (2017)
observed that rainfall distribution had effects and
reduce N,O emission by using nitrification
inhibitor-DMPP. Similarly, Pfab er al. (2012)
recorded similar response of nitrification inhibitor
in reducing emission and lowers down the
emission factor from a vegetable field in loamy
soil in Germany. In addition to current analysis,
biochar reduced nitrous oxide emission in loamy
cropped soil as seen in undisturbed core and
disturbed soil samples. Thus, contribution of
different factors towards emission potential is to
be identified and quantified.

Effects of soil physical properties on N,O
emission

Physical properties of soil greatly influence
the physical processes and rate of N,O emission.
Bulk density, porosity, water filled pore space,
temperature and moisture content etc. had
statistically significant influence on the emission
inventory. The reduced oxygen diffusivity and
increasing respiration under differential
temperature increase and moisture content alters
gas emissions. Soil texture-a robust determinant
factor plays another major role in the emission
process as observed by Weitz et al. (2001) in
clay and loam soils having annual and perennial
crops. Singurindy et al. (2006) recorded textural
effects from urine treated soils on differential N,O
emission. Further, interaction effects of salinity
and soil texture indicated that with increasing
salinity, emission enhanced (46.81 to 780.69 ug
N kg') in sandy clay loam soil as compared to
silty clay soil (11.81 to 60.74 pg N kg') as
observed by Yu et al. (2019). Dobbie and Smith
(2001) recorded higher emission from grassland
as compared to arable soils under variable
temperature ranges; however, 30 and 12-fold
increase in emission from arable soils with greater
water filled pore spaces than grasslands was
noted. Undisturbed core soil samples from
temperate and boreal forest sites when kept under
incubation with soil moisture and temperature
ranges of 0 to 300 kPa and 5 to 20°C,
respectively, showed variable rates of nitric oxide
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and nitrous oxide emissions (Schindlbacher et al.,
2004). Such variations were due to the effect of
soil ecological process underlying a forest habitat.
The interaction between soil physical factors and
biological processes determine the exchange of
green house gases between soil and atmosphere.
In this connection, water filled pores, temperature
and compaction driven microbial actions play
important role in nitrification-denitrification
processes (Smith et al., 2003; Khalil and Baggs,
2005; Armour et al., 2013). Bateman and Baggs
(2005) experimentally proved that different
capacity of water filled pore spaces (WFPS) had
significantly influence on the nitrification (35 to
60 per cent WEPS). In fact, soil related parameters
like types, bulk density and others predominantly
affect on the gas diffusion in soils (Conen ef al.,
2000; Fujikawa and Miyazaki, 2005). Bessou et
al. (2010) described statistically positive role of
compaction on nitrous oxide emission. Soil
moisture content do differ emission rates and
quantity while electrical conductivity also affects
on microbial process which alters the N,O
emission. It was noticed that there was reduction
in emission from 2.0 to 0.86 mg N,O-N m™ from
0.5 to 2.0 dSm™ EC (del Prado et al., 2006;
Adviento-Borbe et al., 2006). The water filled
pore space significantly controls emission; rainfall
event alters the process as described by Du et al.
(2006) wherein annual N,O flux varied between
0.25 to 1.62 kg N ha! from greening to littering
stages in grasslands. Emission and gas diffusivity
were positively responsive to bulk density and
moisture contents (Klefoth ez al., 2014). Xu et al.
(2016) recorded differential diurnal pattern in N,O
emission when watering on surface and
subsurface at 12, 15 and 18 cm depths; 423.31 to
639.13 ug N,O m? h' during May month after
first watering whereas during July after second
watering, 178.28 to 390.21 ig N,O m? h'!' was
observed. At lower compaction level (bulk density
of 1.35 Mg m™) and water filled pore space (57.4
to 98.3%) emits higher cumulative nitrous oxide
(278 to 577 mg N m? d') as compared to greater
bulk density (1.45 Mg m) with 130 to 561 mg N
m? d!' (Rabot et al. 2016). Abbasi et al. (2020)
inferred moisture content, temperature and rainfall
interaction during growing season from 2012 to
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2015 and cumulative emissions of 517.72 to
1178.75 g N,O-N ha! yr'! was recorded with yield
of 4.01 to 4.65 (Soybean), 4.60 to 4.88 (Corn)
MT ha!l. Wang et al. (2018) expressed that soil
reaction act as dominant modifier in emission
process across regional scales in presence of
moisture and other physical fraction of soils;
although soil reaction had utmost impact on
denitrification process as recorded by Sjimek and
Cooper (2002) and Cuhel e al. (2010). Kitzler et
al. (2006) noted that high pH in calcareous
mountain forest soil emit lower trace gases.
Moreover, nitrification rates were greater in high
clay soil than soils with lower clay percentage
with soil reaction influencing mainly on ammonia
oxidizing bacteria (Pereira e Silva et al., 2012).
The substrate and its chemical composition, types
and quality of residues either in agricultural lands,
forest or agroforestry system showed variable
pattern of N,O emission. Zhang et al. (2014)
evaluated the substrates composition for N,O
emission process and showed different
contribution to the overall process as followed in
the order of (NH,),SO,<amino acid <maize straw.
Millar and Baggs (2004) evaluated agroforestry
residues of Sesbania, Crotalaria, Macroptilium
and Calliandra to indicate the quality composition
impacts on emission flux in a Kenyan oxisol.
Even, in absence of sufficient rainfall and low
labile organic carbon, black soils emitted lower
N,O (Chen et al., 2014). The effect of land
management comes into play to alter emission
process and thereby quantity. Dann et al. (2013)
noticed that the fluxes were higher at soil surface
as compared to water tables. Bandyopadhyay and
Lal (2014) concluded that large macro-aggregates
contributed (37.9%) towards bulk N,O emissions
was greater as compared to micro-aggregates and
mineral fraction. Moreover, cumulative N,O
emissions from different aggregate size fractions
accounted for 56% of the emissions from the bulk
soil. The speed at which N,O emission taking
place in soil depends on the rate of water filled
pore space volume and connectivity as well. The
wetting and drying cycle’s had impacts on the
emission with higher in the first cycle than in
next cycles (Rabot et al., 2015). Even,
accumulation of nitrous oxide during thawing
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period under snow cover contributes to the air
and split dose of 80 kg ha! not only increased
Yield (23%) but reduced emission (16%) also as
found by Russenes et al. (2019). Yin et al. (2020)
expressed that soil indicators like dissolved
organic carbon, moisture, temperature etc
positively correlated and impacts on the emission
rate. Thus, role of soil physical determinants on
the N,O flux was quantified across rainfall, water
regimes, pore space dynamics, role of temperature
etc. in order to understand the direct or indirect
influence. Area under drip fertigated orchards and
other soil and water conservation measures
implemented in fruit farming needs to be
identified for this purpose (Adak et al., 2019).
Further study should lead to wide spectrum
hydrothermal and hydrological regimes in various
soil types having different soil textural classes to
develop inventory of N,O flux and thereby policy
planning for mitigation strategy.

Influence of tillage, cover crops and residue
management on N,0 emission

Land management system consisting of
different tillage components, cover crops, litter
fall, residue incorporation and crop rotation etc.
statistically impacts N,O emission across agri-
horticultural ecological niche. Table 1 summarizes
some of the soil management related affects on
the flux. The placement of fertilizer depths in
combination of tillage and irrigation management
was also known to alter the quantity of green
house gases evolution. MacKenzie et al. (1998)
recorded 50 to 450 ng of N m? s! N,O emission
from heavy clay, sandy loam, clay and silty clay
loam soils over a period of three years under the
influence of tillage, corn-soybean-alfalfa, corn
soybean crop rotations etc. while Jantalia et al.
(2008) observed the differential rate of nitrous
emission from a Rhodic Ferralsol Brazilian soil.
The effectiveness of several cover crops were also
tested in order to reduce N,O emission and also
to enhance the efficiency of the added fertilizer.
Justes et al. (1999) concluded that cover crops
radish decrease the nitrate leaching in soil.
Quality of irrigation water also determines the
emission along with cover cropping in tomato as
well; winter legume however as cover crops

Tillage and Soil Physical Properties on N,O Emission in Agri-horti Ecosystem 263

increased growing season N,O emission than
without cover crop under conventional furrow
irrigation system while subsurface drip system
lowers down the emission in coarse loamy or silt
loam soils (Kallenbach et al., 2010). Incorporation
of crop residue modifies the emission pathways
and rate of evolutions. Baggs et al. (2000) found
that crop residue incorporation with high nitrogen
content in lettuce residue emitted higher flux
while cowpea-maize residue effecting the N,O
emission in tropical luvisol (Frimpong et al.,
2011). In order to predict precisely nitrous oxide
emission from soil, regression model was found
to be more accurate as observed by Stacey et al.
(2006). Metay et al. (2007) recorded emission
was exponentially related to water filled pore
space at top surface (10 cm depth) soil and
estimated annual N,O emissions ranged from 31
to 35 g N,O-N ha'! year! for conventional and
no-tillage system. Abdalla ef al. (2014) obtained
reduced tillage with cover crops (5.3 kg ha') had
higher annual nitrous oxide flux than no-tillage
(3.8 kg ha') with variable soil temperature (14.5
to 14.6°C) and water filled pore space (43 to
44%). Abalos et al. (2013) documented the
possible effect of maize stover incorporation with
organic/chemical fertilization in barley crop
cultivated under Mediterranean climate. The said
incorporation enhanced N,O emission while
replacement of urea by pig slurry reduced
considerable emission irrespective of crop residue
incorporation. In northern China plains, Gao et
al. (2016) observed that maize and wheat residue
with 250 kg N ha'! increased emission flux than
only addition of 250 kg N ha' in black soil
(Vertisol) while in alluvial soils, wheat residue
increased and maize residue decreased nitrous
emissions. Tillage effects significantly on the
emission fluxes across the food or fruit producing
system. Baggs et al. (2003) found that zero and
conventional tillage differs in their interaction
with cover crops and fertilization on the emission
in silt loam soil of England. Maximum emission
was observed in conventionally tilled bean (Vicia
faba) and zero tilled rye; a similar response was
noted in zero tillage after residue + fertilizer
application. Rochette (2008) opined that no-till
only enhanced the emission as a function of soil
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Table 1 contd.

Management system involved

N,O emission dynamics

Ecosystem
service

Soil type

Country

Reference

and texture

Urine, dung, urea fertilizers,
Dicyandiamide in different

combinations

Dicyandiamide reduced N,O emission

from grazed pasture.

Pastures (mixture

of perennial rye
grass and white

Canterbury, Templeton
silt loam
clover

Cameron

etal (2011)

New Zealand
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Incorporation of crop residue and
fertilizer ratio combination

Cowpea, Mucuna Emission from all residues was

pruriens and
Leucaena

Frimpong and Tamale, Ghana Reddish brown

Baggs (2010)

positively correlated with residue C:N
ratio and negatively correlated with
residue chemical composition. Ratio
of 25:75 Leucaena:Fertilizer and

sandy loam

leucocephala

cowpea: fertilizer emitted greater N,O.
Emission in zone-tillage was 20 and 38%

lower than no-tillage and moldboard

Tillage (moldboard plow:15 cm

Wheat-corn-

Clay loam soils

Ontario,

Drury et al.

depth, fall zone-tillage:21 cm width,

soybean rotation

Eastern
Canada

(2006)

15 cm depth and no-tillage). Shallow

(2 cm) and deep (10 cm) N place

ment depth.

plow tillage at deeper N placed. Shallow

N placement had lower emission.

with tillage and
N placement for

three seasons

aeration. The rate of fluxes under no-till was
recorded to be lower (0.06), higher (0.12) and
higher (2.00 kg N ha') as compared to tilled soils
with good, medium and poor aeration,
respectively. Similarly, Garland et al. (2011)
concluded that higher N,O emission from no-
tillage (0.19 kg N,O-N ha' growing season™)
vineyard as compared to conventional tillage
(0.13 kg N,O-N ha! growing season™) in Willows
silty clay soils of California, USA; even the
different emission rates were also recorded across
rows of differential tillage practices. The
conventional or zero tillage has different potential
to global warming potential. Dendooven et al.
(2012) recorded that these systems do differ along
with cover crop residue and /or fertilizer for better
carbon sequestration and thereby vary in green
house gas emission. Garcia-Marco et al. (2016)
noticed that conventional tillage enhanced
emission by about 68% as compared to no-tillage
whereas liming reduced 61% emission in tillage
imposed soils than no-tillage one. Contrasting to
the findings Li et al. (2016) noted that tillage
does not enhanced emission in a semiarid
environment of south-eastern Australia. Yu ef al.
(2018) obtained an interesting result of reducing
nitrous oxide emission from soil. Plastic mulching
reduced (19-28%) and in presence of nitrapyrin,
it further reduced (23-39%) emission. Further,
earthworm and Collembola dominantly enhanced
emissions (Zhu et al., 2018). Plaza-Bonilla et al.
(2018) are in opinion that no-tillage reduces yield
scaled emission in rainfed Mediterranean ecology.
Moreover, Wu et al. (2020) found that addition
of N enhanced N,O emission from 4.05 mg N m?
in no-addition to 4.37 to 6.62 mg N m2 (0.96 to
1.92 g N m?and 5 to 10 mg N kg'') during freeze-
thaw cycles. Dynamics of N,O flux as a function
of management-induced factors was quantified
across the globe involving tillage-related factors.
Such system needs to ensure reduction in
emission so that atmosphere remains clean and
healthy without adversely affecting productivity.

Potential of green house gas emission from
the agri-horticultural system needs to be
quantified; this is in fact required from view point
of evolving mitigation strategies. Literature
suggested that spatial and temporal variations of
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N,O emission in the food/fruit supply chain
depends on a variety of determinants starting from
tillage, alternate drying and wetting cycles,
conservation strategies, types, placement and
quantity of fertilizers, microbial role, soil
aeration, porosity, salinity, bulk density, pH,
cover crops, residue retention, denitrifiers,
nitrification inhibitors etc. The role of each
system like forest, pasture, grassland, agro-
forestry, annual, perennial etc. differs in their
potential to contribute to the total N,O fluxes.
Water quality and conservation practices do have
some positive role in mitigating the fluxes.
Rainfal, soil temperature in the ecological process
significantly contributes to the ongoing emission
of N,O. Linquist et al. (2012) meta-analytically
proved that yield-scaled global warming potential
of rice was 4 times higher than maize and wheat.
Zhu et al. (2015) observed variable rate of
emission in banana orchard under urea application
rate and urease inhibitor. Rowlings et al. (2013)
estimated N,O emission (1.7 to 7.6 kg N,O-N
ha! yr') from 30 years old litchi orchard in the
humid subtropical region of Australia following
orchard management. Addition of biochar to soil
improves the water holding capacity and porosity
and reduced bulk density. Thus, its addition leads
to lowers down the fluxes of N,O from soils (Case
et al., 2012). The nitrification-denitrification
process along with the inhibitors modifies the
imbibitions process of evolving the gases. Ambus
(1998) quantified N,O emission from riparian
grassland, coastal grassland, spruce forest, beech
forest and an agricultural field and concluded that
lower sites having higher soil organic matter and
wetter release higher fluxes. Use of dicyan-
diamide, slow release fertilizers, neem coated
fertilizer etc. are some of the ways to reduce the
emission. Dennis et al. (2012) and Ernfors et al.
(2014) observed that nitrification inhibitor
reduced N from cattle urine/slurry in grazed
grassland. Litter decomposition and wetting soils
in acidic forest also contribute to the fluxes
sometimes may be of minute quantity. Even,
under field conditions soil temperature affects the
longevity of nitrification inhibitors as shown by
Kelliher et al. (2014); with soil temperature of 8
and 16°C, 39 and 25 days, it can persist in soil to

[Vol. 19

its half value. Management options consisting of
hippuric and benzoic acids are not mitigating the
in-situ emission as shown by Krol et al. (2015).
Thus, management options should be developed
in such a way that emits lower emission from
clay loam and clay soil. Water filled pore spaces
are the key drivers in this process of evolving
greater N,O emission (Volpi et al., 2017).

Conclusion

All these study suggested that indeed there is
a need to develop inventory from each segment
of the ecosystem. Further, management for
mitigation should be evolved for location/site
specific regions involving agricultural produce or
fruit farming. Future study should include
emission factor along with the flux should be
taken into account while developing the data base
and region-specific factor should be developed.
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