

Vol. 19, No. 2, pp. 260-272 (2019) Journal of Agricultural Physics ISSN 0973-032X http://www.agrophysics.in

Research Article

Influence of Tillage and Soil Physical Properties on N₂O Emission in Agri-horti Ecosystem

TARUN ADAK*, G. PANDEY AND S. RAJAN

ICAR- Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow-226101, Uttar Pradesh

ABSTRACT

Estimation of nitrous oxide from across agri-horticultural system is a prerequisite for having an idea about the climate change contribution at local levels. Understanding the ecological process occurred during the food or fruit production to supply chain forms the basis of adaptation strategies. Soil physical properties along with chemical properties and tillage types have tremendous influence on the nitrous oxide (N_2O) emission cycle. Biological activities significantly contribute in the emission process through nitrification/de-nitrification alteration. Mitigation strategies should be evolved in such a way or scale so that the quantity of N_2O emission should be reduced making ecosystem safe and habitable. The present work focused on study in smaller or larger units on N_2O emission cycle. Zone specific emission factor and effective soil determinants should be developed.

Key words: Horticultural ecosystem, Nitrous oxide emission, Climate change, Soil physical parameters, Agroecosystem

Introduction

Global climate change along with related factors is significantly changing the earth ecosystem. The geological contribution and the biogeochemistry were given maximum attention to quantify the amount of each unit contributing at local condition to the overall growth of green house gases. Emission of nitrous oxide, nitric oxide, methane, carbon dioxide, carbon monoxide, etc. as well as depletion of ozone layer needs to be quantified from food to supply chain so as to alter the mitigation strategies. Repository of research data across agri-horticultural ecosystem suggested that each of the orchards has tremendous contribution towards building up of emission process; although there might be some small contributions which may pile up over the

decades or so (Dickinson et al., 2019; Masters, 2019). The status of mineralogical, hydrological and environmental cycle determines the emissivity and further process to follow antagonistic or synergistic pathways over a period of longer duration. Linn and Dornan (1984) nicely described the role of water filled pores on the emission of nitrous oxide production under tilled and non-tilled conditions. Under moist and dry condition with temperature and nitrate content, variable nitric oxide emission (NO) was recorded suggesting the determinant role of soil structure on emission in tropical savannah soil (Cardenas et al., 1993). Inubushi et al. (1999) explained the interaction of salt type and concentration with soil moisture on the N₂O emission and nitrogen dynamics in Yellow soil and Andosol. It was observed that drip irrigation system lowers down the N₂O emission from melon produce than furrow system of irrigation with and without the use of nitrogenous fertilizer. A range of 0.45 to

Email: Tarun.Adak@icar.gov.in, cishtarunadak@gmail.com

0.92 kg N₂O-N ha⁻¹ was recorded across dry and wet areas suggested the role of irrigation scheduling in arid and semi-arid regions (Sánchez-Martýn et al., 2008). A considerable amount of annual N loss (0.8 to 10.0 and 11.0 to 34.4 kg N₂O-N ha⁻¹ across replicates in fertilized and grazing condition during 2002 and 2003) in the form of N₂O emission was also estimated from the grassland in Ireland (Hyde et al., 2006). Ravishankara et al. (2009) opined that being N₂O emission unregulated by the Montreal protocol, it will have tremendous impact on the building up in the atmosphere with detrimental role on O₃ layer depletion. Ofcourse seasonal and region specific variability in its emission may be encountered as observed in almond orchards in California; a narrow range of 0.53 to 0.65 kg N₂O-N ha⁻¹ year⁻¹ with lower emission factor of 0.19 to 0.25 was recorded (Decock et al., 2017). Similarly, Pang et al. (2009) observed 48.2, 36.8 and 31.9 µg N₂O m⁻² h⁻¹ annual average emissions from 0.5, 1.5 and 2.5 m apple tree row with greater emission in summer months. Zhang et al. (2019) reported that tropical regions having grasslands and forest made significant contribution towards global N2O budgets with average forests (3.62 Tg N yr⁻¹) and grasslands (1.40 Tg N yr⁻¹) emission. Generally, June to November contributes more in the emission inventory from forests while growing season had significant addition in grasslands. The combined effects of soil temperature and moisture showed a variability pattern of N₂O emission; a lower (0.22) from ungrazed semi-arid steppe (Inner Mongolia, China) < 0.67 (tropical rain forest, Queensland, Australia) <0.96 kg N ha⁻¹ yr⁻¹ (temperate spruce forest, Germany) was quantified (Luo et al., 2013). Hassler et al. (2015) recorded reduced CO₂ (107.2 to 115.7 mg C m⁻² h⁻¹) and methane emission (-3.0 to -14.9 μ g C m⁻² h⁻¹) in the oil palm and rubber plantations than forest areas suggested reduced soil organic matter build up by reduced litter fall and reduced N build up in soil. Statistically influences of biochar application on the dynamics of soil parameters and emission rates were also recorded. Use of nitrification inhibitor is an example for restricting the process and emission cycles. Based on three years' field

experimentation with rainfed barely grown in a clayey loam texture soil under semiarid Mediterranean climate, Abalos *et al.* (2017) observed that rainfall distribution had effects and reduce N₂O emission by using nitrification inhibitor-DMPP. Similarly, Pfab *et al.* (2012) recorded similar response of nitrification inhibitor in reducing emission and lowers down the emission factor from a vegetable field in loamy soil in Germany. In addition to current analysis, biochar reduced nitrous oxide emission in loamy cropped soil as seen in undisturbed core and disturbed soil samples. Thus, contribution of different factors towards emission potential is to be identified and quantified.

Effects of soil physical properties on N_2O emission

Physical properties of soil greatly influence the physical processes and rate of N₂O emission. Bulk density, porosity, water filled pore space, temperature and moisture content etc. had statistically significant influence on the emission inventory. The reduced oxygen diffusivity and increasing respiration under differential temperature increase and moisture content alters gas emissions. Soil texture-a robust determinant factor plays another major role in the emission process as observed by Weitz et al. (2001) in clay and loam soils having annual and perennial crops. Singurindy et al. (2006) recorded textural effects from urine treated soils on differential N₂O emission. Further, interaction effects of salinity and soil texture indicated that with increasing salinity, emission enhanced (46.81 to 780.69 µg N kg-1) in sandy clay loam soil as compared to silty clay soil (11.81 to 60.74 µg N kg⁻¹) as observed by Yu et al. (2019). Dobbie and Smith (2001) recorded higher emission from grassland as compared to arable soils under variable temperature ranges; however, 30 and 12-fold increase in emission from arable soils with greater water filled pore spaces than grasslands was noted. Undisturbed core soil samples from temperate and boreal forest sites when kept under incubation with soil moisture and temperature ranges of 0 to 300 kPa and 5 to 20°C, respectively, showed variable rates of nitric oxide

and nitrous oxide emissions (Schindlbacher et al., 2004). Such variations were due to the effect of soil ecological process underlying a forest habitat. The interaction between soil physical factors and biological processes determine the exchange of green house gases between soil and atmosphere. In this connection, water filled pores, temperature and compaction driven microbial actions play important role in nitrification-denitrification processes (Smith et al., 2003; Khalil and Baggs, 2005; Armour et al., 2013). Bateman and Baggs (2005) experimentally proved that different capacity of water filled pore spaces (WFPS) had significantly influence on the nitrification (35 to 60 per cent WFPS). In fact, soil related parameters like types, bulk density and others predominantly affect on the gas diffusion in soils (Conen et al., 2000; Fujikawa and Miyazaki, 2005). Bessou et al. (2010) described statistically positive role of compaction on nitrous oxide emission. Soil moisture content do differ emission rates and quantity while electrical conductivity also affects on microbial process which alters the N₂O emission. It was noticed that there was reduction in emission from 2.0 to 0.86 mg N_2 O-N m⁻² from 0.5 to 2.0 dSm⁻¹ EC (del Prado et al., 2006; Adviento-Borbe et al., 2006). The water filled pore space significantly controls emission; rainfall event alters the process as described by Du et al. (2006) wherein annual N2O flux varied between 0.25 to 1.62 kg N ha⁻¹ from greening to littering stages in grasslands. Emission and gas diffusivity were positively responsive to bulk density and moisture contents (Klefoth et al., 2014). Xu et al. (2016) recorded differential diurnal pattern in N₂O emission when watering on surface and subsurface at 12, 15 and 18 cm depths; 423.31 to 639.13 µg N₂O m⁻² h⁻¹ during May month after first watering whereas during July after second watering, 178.28 to 390.21 ig N_2O m⁻² h⁻¹ was observed. At lower compaction level (bulk density of 1.35 Mg m⁻³) and water filled pore space (57.4 to 98.3%) emits higher cumulative nitrous oxide (278 to 577 mg N m⁻² d⁻¹) as compared to greater bulk density (1.45 Mg m⁻³) with 130 to 561 mg N m⁻² d⁻¹ (Rabot et al. 2016). Abbasi et al. (2020) inferred moisture content, temperature and rainfall interaction during growing season from 2012 to

2015 and cumulative emissions of 517.72 to 1178.75 g N₂O-N ha⁻¹ yr⁻¹ was recorded with yield of 4.01 to 4.65 (Soybean), 4.60 to 4.88 (Corn) MT ha⁻¹. Wang et al. (2018) expressed that soil reaction act as dominant modifier in emission process across regional scales in presence of moisture and other physical fraction of soils; although soil reaction had utmost impact on denitrification process as recorded by Simek and Cooper (2002) and Čuhel et al. (2010). Kitzler et al. (2006) noted that high pH in calcareous mountain forest soil emit lower trace gases. Moreover, nitrification rates were greater in high clay soil than soils with lower clay percentage with soil reaction influencing mainly on ammonia oxidizing bacteria (Pereira e Silva et al., 2012). The substrate and its chemical composition, types and quality of residues either in agricultural lands, forest or agroforestry system showed variable pattern of N₂O emission. Zhang et al. (2014) evaluated the substrates composition for N₂O emission process and showed different contribution to the overall process as followed in the order of (NH₄)₂SO₄<amino acid <maize straw. Millar and Baggs (2004) evaluated agroforestry residues of Sesbania, Crotalaria, Macroptilium and Calliandra to indicate the quality composition impacts on emission flux in a Kenyan oxisol. Even, in absence of sufficient rainfall and low labile organic carbon, black soils emitted lower N₂O (Chen et al., 2014). The effect of land management comes into play to alter emission process and thereby quantity. Dann et al. (2013) noticed that the fluxes were higher at soil surface as compared to water tables. Bandyopadhyay and Lal (2014) concluded that large macro-aggregates contributed (37.9%) towards bulk N₂O emissions was greater as compared to micro-aggregates and mineral fraction. Moreover, cumulative N₂O emissions from different aggregate size fractions accounted for 56% of the emissions from the bulk soil. The speed at which N₂O emission taking place in soil depends on the rate of water filled pore space volume and connectivity as well. The wetting and drying cycle's had impacts on the emission with higher in the first cycle than in next cycles (Rabot et al., 2015). Even, accumulation of nitrous oxide during thawing period under snow cover contributes to the air and split dose of 80 kg ha⁻¹ not only increased Yield (23%) but reduced emission (16%) also as found by Russenes et al. (2019). Yin et al. (2020) expressed that soil indicators like dissolved organic carbon, moisture, temperature etc positively correlated and impacts on the emission rate. Thus, role of soil physical determinants on the N₂O flux was quantified across rainfall, water regimes, pore space dynamics, role of temperature etc. in order to understand the direct or indirect influence. Area under drip fertigated orchards and other soil and water conservation measures implemented in fruit farming needs to be identified for this purpose (Adak et al., 2019). Further study should lead to wide spectrum hydrothermal and hydrological regimes in various soil types having different soil textural classes to develop inventory of N₂O flux and thereby policy planning for mitigation strategy.

Influence of tillage, cover crops and residue management on N,O emission

Land management system consisting of different tillage components, cover crops, litter fall, residue incorporation and crop rotation etc. statistically impacts N₂O emission across agrihorticultural ecological niche. Table 1 summarizes some of the soil management related affects on the flux. The placement of fertilizer depths in combination of tillage and irrigation management was also known to alter the quantity of green house gases evolution. MacKenzie et al. (1998) recorded 50 to 450 ng of N m⁻² s⁻¹ N₂O emission from heavy clay, sandy loam, clay and silty clay loam soils over a period of three years under the influence of tillage, corn-soybean-alfalfa, corn soybean crop rotations etc. while Jantalia et al. (2008) observed the differential rate of nitrous emission from a Rhodic Ferralsol Brazilian soil. The effectiveness of several cover crops were also tested in order to reduce N₂O emission and also to enhance the efficiency of the added fertilizer. Justes et al. (1999) concluded that cover crops radish decrease the nitrate leaching in soil. Quality of irrigation water also determines the emission along with cover cropping in tomato as well; winter legume however as cover crops

increased growing season N₂O emission than without cover crop under conventional furrow irrigation system while subsurface drip system lowers down the emission in coarse loamy or silt loam soils (Kallenbach et al., 2010). Incorporation of crop residue modifies the emission pathways and rate of evolutions. Baggs et al. (2000) found that crop residue incorporation with high nitrogen content in lettuce residue emitted higher flux while cowpea-maize residue effecting the N₂O emission in tropical luvisol (Frimpong et al., 2011). In order to predict precisely nitrous oxide emission from soil, regression model was found to be more accurate as observed by Stacey et al. (2006). Metay et al. (2007) recorded emission was exponentially related to water filled pore space at top surface (10 cm depth) soil and estimated annual N₂O emissions ranged from 31 to 35 g N₂O-N ha⁻¹ year⁻¹ for conventional and no-tillage system. Abdalla et al. (2014) obtained reduced tillage with cover crops (5.3 kg ha⁻¹) had higher annual nitrous oxide flux than no-tillage (3.8 kg ha⁻¹) with variable soil temperature (14.5 to 14.6°C) and water filled pore space (43 to 44%). Abalos et al. (2013) documented the possible effect of maize stover incorporation with organic/chemical fertilization in barley crop cultivated under Mediterranean climate. The said incorporation enhanced N₂O emission while replacement of urea by pig slurry reduced considerable emission irrespective of crop residue incorporation. In northern China plains, Gao et al. (2016) observed that maize and wheat residue with 250 kg N ha-1 increased emission flux than only addition of 250 kg N ha-1 in black soil (Vertisol) while in alluvial soils, wheat residue increased and maize residue decreased nitrous emissions. Tillage effects significantly on the emission fluxes across the food or fruit producing system. Baggs et al. (2003) found that zero and conventional tillage differs in their interaction with cover crops and fertilization on the emission in silt loam soil of England. Maximum emission was observed in conventionally tilled bean (Vicia faba) and zero tilled rye; a similar response was noted in zero tillage after residue + fertilizer application. Rochette (2008) opined that no-till only enhanced the emission as a function of soil

Table 1. Role of soil managements on the N₂O flux across various agri-horti ecologies

		7, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,			
Reference	Country	Soil type and texture	Ecosystem service	$\rm N_2O$ emission dynamics	Management system involved
Jones <i>et al.</i> (2017)	Arkansas, USA	Silt loams (mesic Typic Fragiudult and thermic Typic Hapludult)	Organic apple orchard	Denitrifiers dynamics showed potential for enhanced denitrification.	Ground cover (compost, wood chips, paper mulch, or mow-and-blow) and nutrient management (poultry litter, organic commercial or no fertilizer)
Cheng <i>et al.</i> (2017)	Jiangsu Province, China	Gleyi-Stagnic Anthrosols	Peach orchard	Fertilized peach orchard is potential emitter (Two years average N ₂ O emission raised from 3.2 to 9.3, 10.3, and 20.1 kg N ha ⁻¹ . N ₂ O emission factor (1.32 to 1.86%)	Organic and chemical N fertilization
Müller Júnior et al. (2019)	Santa Catarina, southern Brazil	Local soil	Onion production in no-tillage system	Higher emission in poultry manure addition in presence of oilseed radish	Addition of cover crops like oilseed radish, black oat and weed residues with and without poultry manure under no-tillage practice
Friedl <i>et al.</i> (2018)	Subtropical Australia, Casino (New South Wales), Gympie and Kerry (Queensland)	A pellicVertisol, a ferric Acrisol and a mollic Fluvisol (clay, loam and sandy clay loam)	Intensively managed dairy pastures soil	Increased soil moisture during wetting cycles after irrigation or rainfall triggers N ₂ O emissions.	Wetting and drying cycles in pastures
Guardia <i>et al.</i> (2016)	Madrid, Spain	Silty clay loam (Typic Calcixerept)	Maize	Low cumulative N ₂ O emissions (0.57 to 0.75 kg N ₂ O-N ha ⁻¹ yr ⁻¹)	Cover crops (Vicia sativa) and barley, irrigation and fertility management
Basche <i>et al.</i> (2014)	USA, India, UK, China, Kenya, Denmark, Japan, Italy	Variable soil types	Cereals, Grapes, pasture, tomatoes, afalfa etc.	Based on 106 observations, it was concluded that 40 percent study showed cover crops reduce emission whereas rest indicate increase. Legume crop enhanced emission.	Legume and non-legume cover crops
Bradley et al. (2011)	Québec, Canada	Sandy loam and clay	Riparian buffer strip and maize	Higher emissions in riparian buffer strips than in adjacent maize fields.	Earthworm and litter (switchgrass, alfalfa, corn stover and red oak, apple, Rhododendron) Contd

lable l contd.					
Reference	Country	Soil type and texture	Ecosystem service	N ₂ O emission dynamics	Management system involved
Cameron et al. (2011)	Canterbury, New Zealand	Templeton silt loam	Pastures (mixture of perennial rye grass and white clover	Pastures (mixture Dicyandiamide reduced N ₂ O emission of perennial rye from grazed pasture. grass and white clover	Urine, dung, urea fertilizers, Dicyandiamide in different combinations
Frimpong and Baggs (2010)	Frimpong and Tamale, Ghana Reddish brown Baggs (2010) sandy loam	Reddish brown sandy loam	Cowpea, Mucuna pruriens and Leucaena leucocephala	Emission from all residues was positively correlated with residue C:N ratio and negatively correlated with residue chemical composition. Ratio of 25:75 Leucaena:Fertilizer and cowpea: fertilizer emitted greater N ₂ O.	Incorporation of crop residue and fertilizer ratio combination
Drury <i>et al.</i> (2006)	Ontario, Eastern Canada	Clay loam soils	Wheat-corn- soybean rotation with tillage and N placement for three seasons	Emission in zone-tillage was 20 and 38% lower than no-tillage and moldboard plow tillage at deeper N placed. Shallow N placement had lower emission.	Tillage (moldboard plow:15 cm depth, fall zone-tillage:21 cm width, 15 cm depth and no-tillage). Shallow (2 cm) and deep (10 cm) N place ment depth.

aeration. The rate of fluxes under no-till was recorded to be lower (0.06), higher (0.12) and higher (2.00 kg N ha⁻¹) as compared to tilled soils with good, medium and poor aeration, respectively. Similarly, Garland et al. (2011) concluded that higher N₂O emission from notillage (0.19 kg N₂O-N ha⁻¹ growing season⁻¹) vineyard as compared to conventional tillage (0.13 kg N₂O-N ha⁻¹ growing season⁻¹) in Willows silty clay soils of California, USA; even the different emission rates were also recorded across rows of differential tillage practices. The conventional or zero tillage has different potential to global warming potential. Dendooven et al. (2012) recorded that these systems do differ along with cover crop residue and /or fertilizer for better carbon sequestration and thereby vary in green house gas emission. Garcia-Marco et al. (2016) noticed that conventional tillage enhanced emission by about 68% as compared to no-tillage whereas liming reduced 61% emission in tillage imposed soils than no-tillage one. Contrasting to the findings Li et al. (2016) noted that tillage does not enhanced emission in a semiarid environment of south-eastern Australia. Yu et al. (2018) obtained an interesting result of reducing nitrous oxide emission from soil. Plastic mulching reduced (19-28%) and in presence of nitrapyrin, it further reduced (23-39%) emission. Further, earthworm and Collembola dominantly enhanced emissions (Zhu et al., 2018). Plaza-Bonilla et al. (2018) are in opinion that no-tillage reduces yield scaled emission in rainfed Mediterranean ecology. Moreover, Wu et al. (2020) found that addition of N enhanced N₂O emission from 4.05 mg N m⁻² in no-addition to 4.37 to 6.62 mg N m⁻² (0.96 to 1.92 g N m⁻² and 5 to 10 mg N kg⁻¹) during freezethaw cycles. Dynamics of N₂O flux as a function of management-induced factors was quantified across the globe involving tillage-related factors. Such system needs to ensure reduction in emission so that atmosphere remains clean and healthy without adversely affecting productivity.

Potential of green house gas emission from the agri-horticultural system needs to be quantified; this is in fact required from view point of evolving mitigation strategies. Literature suggested that spatial and temporal variations of N₂O emission in the food/fruit supply chain depends on a variety of determinants starting from tillage, alternate drying and wetting cycles, conservation strategies, types, placement and quantity of fertilizers, microbial role, soil aeration, porosity, salinity, bulk density, pH, cover crops, residue retention, denitrifiers, nitrification inhibitors etc. The role of each system like forest, pasture, grassland, agroforestry, annual, perennial etc. differs in their potential to contribute to the total N₂O fluxes. Water quality and conservation practices do have some positive role in mitigating the fluxes. Rainfal, soil temperature in the ecological process significantly contributes to the ongoing emission of N₂O. Linquist et al. (2012) meta-analytically proved that yield-scaled global warming potential of rice was 4 times higher than maize and wheat. Zhu et al. (2015) observed variable rate of emission in banana orchard under urea application rate and urease inhibitor. Rowlings et al. (2013) estimated N₂O emission (1.7 to 7.6 kg N₂O-N ha⁻¹ yr⁻¹) from 30 years old litchi orchard in the humid subtropical region of Australia following orchard management. Addition of biochar to soil improves the water holding capacity and porosity and reduced bulk density. Thus, its addition leads to lowers down the fluxes of N₂O from soils (Case et al., 2012). The nitrification-denitrification process along with the inhibitors modifies the imbibitions process of evolving the gases. Ambus (1998) quantified N₂O emission from riparian grassland, coastal grassland, spruce forest, beech forest and an agricultural field and concluded that lower sites having higher soil organic matter and wetter release higher fluxes. Use of dicyandiamide, slow release fertilizers, neem coated fertilizer etc. are some of the ways to reduce the emission. Dennis et al. (2012) and Ernfors et al. (2014) observed that nitrification inhibitor reduced N from cattle urine/slurry in grazed grassland. Litter decomposition and wetting soils in acidic forest also contribute to the fluxes sometimes may be of minute quantity. Even, under field conditions soil temperature affects the longevity of nitrification inhibitors as shown by Kelliher et al. (2014); with soil temperature of 8 and 16°C, 39 and 25 days, it can persist in soil to

its half value. Management options consisting of hippuric and benzoic acids are not mitigating the *in-situ* emission as shown by Krol *et al.* (2015). Thus, management options should be developed in such a way that emits lower emission from clay loam and clay soil. Water filled pore spaces are the key drivers in this process of evolving greater N₂O emission (Volpi *et al.*, 2017).

Conclusion

All these study suggested that indeed there is a need to develop inventory from each segment of the ecosystem. Further, management for mitigation should be evolved for location/site specific regions involving agricultural produce or fruit farming. Future study should include emission factor along with the flux should be taken into account while developing the data base and region-specific factor should be developed.

References

- Abalos, D., Sanz-Cobena, A., Andreu, G. and Vallejo, A. 2017. Rainfall amount and distribution regulate DMPP effects on nitrous oxide emissions under semiarid Mediterranean conditions. *Agric. Ecosyst. Environ.* 238: 36-45.
- Abalos, D., Sanz-Cobena, A., Garcia-Torres, L., van Groenigen, J.W. and Vallejo, A. 2013. Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated Mediterranean barley field. *Plant Soil* **364**: 357-371.
- Abbasi, N.A., Madramootoo, C.A., Zhang, T. and Tan, C.S. 2020. Nitrous oxide emissions as affected by fertilizer and water table management under a corn-soybean rotation. *Geoderma* **375**: 114473.
- Abdalla, M., Hastings, A., Helmy, M., Prescher, A., Osborne, B., Lanigan, G., Forristal, D., Killi, D., Maratha, P., Williams, M., Rueangritsarakul, K., Smith, P., Nolan, P. and Jones, M.B. 2014. Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. *Geoderma* 223-225: 9-20.
- Adak, T., Pandey, G. and Rajan, S. 2019. Advanced knowledge on soil and water conservation measures in fruit orchards. *Journal of Agricultural Physics* **19**(1): 35-45.

- Adviento-Borbe, M.A.A., Doran, J.W., Drijber, R.A., Dobermann, A. 2006. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. *J. Environ. Qual.* 35(6): 1999-2010.
- Ambus, P. 1998. Nitrous oxide production by denitrification and nitrification in temperate forest, grassland and agricultural soils. *Eur. J. Soil Sci.* **49**: 495-502.
- Ameloot, N., Maenhout, P., Neve, S. and Sleutel, S. 2016. Biochar-induced N₂O emission reductions after field incorporation in a loam soil. *Geoderma* **267**: 10-16.
- Armour, J.D., Nelson, P.N., Daniells, J.W., Rasiah, V. and Inman-Bamber, N.G. 2013. Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia. *Agriculture, Ecosystems and Environment* 180: 68-78.
- Baggs, E.M., Stevenson, M., Pihlatie, M., Regar, A., Cook, H. and Cadisch, G. 2003. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. *Plant Soil* **254**: 361-370.
- Baggs, E.M., Rees, R.M., Smith, K.A., and Vinten, A.J.A. 2000. Nitrous oxide emission from soils after incorporating crop residues. *Soil Use Manage*. **16**: 82-87.
- Bandyopadhyay, K.K. and Lal, R. 2014. Effect of land use management on greenhouse gas emissions from water stable aggregates. *Geoderma* **232-234**: 363-372.
- Basche, A.D., Miguez, F.E., Kaspar, T.C. and Castellano, M.J. 2014. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. *J. Soil Water Conserv.* **69**: 471-482.
- Bateman, E.J. and Baggs, E.M. 2005. Contributions of nitrification and denitrification to N₂O emissions from soils at different water-filled pore space. *Biol. Fertil. Soils* **41**: 379-388.
- Bessou, C., Mary, B., Leonard, J., Roussel, M., Grehan, E. and Gabrielle, B. 2010. Modelling soil compaction impacts on nitrous oxide emissions in arable fields. *Eur. J. Soil Sci.* **61**: 348-363.
- Bradley, R.L., Whalen, J., Chagnon, P.L., Lanoix, M. and Alves, M.C. 2011. Nitrous oxide production

- and potential denitrification in soils from riparian buffer strips: Influence of earthworms and plant litter. *Applied Soil Ecol* **47**: 6-13.
- Čuhel, J., Šimek, M., Laughlin, R.J., Bru, D., Che'neby, D., Watson, C.J. and Philippot, L. 2010. Insights into the effect of soil pH on N₂O and N₂ emissions and denitrifier community size and activity. *Applied and Environmental Microbiology* 76(6): 1870-1878.
- Cameron, K.C., Di, H.J. and Moir, J.L. 2014. Dicyandiamide (DCD) effect on nitrous oxide emissions, nitrate leaching and pasture yield in Canterbury, New Zealand. *New Zealand J. Agril Res.* **57**: 251-270.
- Cardenas, L., Rondón, A., Johansson and Sanhueza, E. 1993. Effect of soil moisture, temperature and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils. *J. Geophys. Res.* **98**: 14786-14790.
- Case, S.D.C., McNamara, N.P., Reay, D.S. and Whitaker, J. 2012. The effect of biochar addition on N₂O and CO₂ emissions from a sandy loam soil-The role of soil aeration. *Soil Biol. Biochem.* **51**: 125-134.
- Chen, Z., Ding, W., Luo, Y., Yu, H., Xu, Y., Müller, C., Xu, X. and Zhu, T. 2014. Nitrous oxide emissions from cultivated black soil: A case study in Northeast China and global estimates using empirical model. *Global Biogeochem*. *Cycles* 27: 1311-1326.
- Cheng, Y., Wang, J., Zhang, J.B., Mary, B., Cai, Z.C. 2014. The mechanisms behind reduced NH₄⁺ and NO₃⁻ accumulation due to litter decomposition in the acidic soil of subtropical forest. *Plant Soil* 378: 295-308.
- Cheng, Y., Xie, W., Huang, R., Yan, X.Y. and Wang, S.Q. 2017. Extremely high N₂O but unexpectedly low NO emissions from a highly organic and chemical fertilized peach orchard system in China. *Agric. Ecosyst. Environ.* 246: 202-209.
- Conen, F., Dobbie, K.E. and Smith K.A. 2000. Predicting N₂O emissions from agricultural land through related soil parameters. *Global Change Biol.* **6**(4): 417-426.
- Dann, R., Thomas, S., Waterland, H., Flintoft, M. and Close, M. 2013. Nitrate and nitrous oxide

- dynamics under urine application in an Alluvial Gravel Vadose Zone. *Vadose Zone Journal* **12**(1): 1-10.
- Decock, C., Garland, G., Suddick, E.C. and Six, J. 2017. Season and location–specific nitrous oxide emissions in an almond orchard in California. *Nutr. Cycl. Agroecosyst.* **107**(2): 139-155.
- del Prado, A., Merino, P., Estavillo, J.M., Pinto, M. and Gonzalez-Murua, C. 2006. N₂O and NO emissions from different N sources and under a range of soil water contents. *Nutrient Cycl. Agroecosyst.* 74: 229-243.
- Dendooven, L., Patino-Zúniga, L., Verhulst, N., Luna-Guido, M., Marsch, R., and Govaerts, B. 2012. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. *Agr. Ecosyst. Environ.* **152**: 50-58.
- Dennis, S.J., Cameron, K.C., Di, H.J., Moir, J.L., Staples, V., Sills, P. and Richards, K.G. 2012. Reducing nitrate losses from grazed grassland in Ireland using a nitrification inhibitor (DCD). *Biology and the Environment* **112**B: 79-89.
- Di, H.J. and Cameron, K.C. 2004. Effects of temperature and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate and microbial biomass in a grazed pasture soil. *Australian J. Soil Res.* **42**: 927-932.
- Dickinson, G.R., O'Farrell, P.J., Ridgway, K.J., Bally, I.S.E., Masters, B., Nelson, P. and Pattison, A. 2019. Nitrogen and carbon management in Australian mango orchards to improve productivity and reduce greenhouse gas emissions. *Acta Horticulturae* **1244**: 49-60.
- Dobbie, K.E. and Smith, K.A. 2001. The effects of temperature, water-filled pore space and land use on N₂O emissions from an imperfectly drained gleysol. *Eur. J. Soil Sci.* **52**(4): 667-673.
- Drury, C.F., Reynolds, W.D., Tan, C.S., Welacky, T.W., Calder, W. and McLaughlin, N.B. 2006. Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. *Soil Sci. Soc. Am. J.* **70**: 570-581.
- Du, R., Lu, D. and Wang, G. 2006. Diurnal, seasonal, and inter-annual variations of N₂O fluxes from native semi-arid grassland soils of inner Mongolia. *Soil Biology and Biochemistry* **38**(12): 3474-3482.

- Ernfors, M., Brennan, F.P., Richards, K.G., McGeough, K.L., Griffiths, B.S., Laughlin, R.J., Watson, C.J., Philippot, L., Grant, J., Minet, E.P., Moynihan, E. and Muller, C. 2014. The nitrification inhibitor dicyandiamide increases mineralization immobilization turnover in slurry-amended grassland soil. *J. Agricultural Sci.* 152: S137-S149.
- FirmeSá, M.M., Schaefer, C.E.G.R., Loureiro, D.C., Simas, F.N.B., Alves, B.J.R., Mendonça, E., Figueiredo, E. B., Scala, N. and Panosso, A.R. 2019. Fluxes of CO₂, CH₄, and N₂O in tundracovered and Nothofagus forest soils in the Argentinian Patagonia. *Science Total Environ.* **659**: 401-409.
- Friedl, J., Rosa, D., Rowlings, D.W., Grace, P.R., Müller, C. and Scheer, C. 2018. Dissimilatory nitrate reduction to ammonium (DNRA), not denitrification dominates nitrate reduction in subtropical pasture soils upon rewetting. *Soil Biol. Biochem* 125: 340-349.
- Frimpong, K.A. and Baggs, E.M. 2010. Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? *Soil Use Manage*. **26**: 412-424.
- Frimpong, K.A., Yawson, D.O., Baggs, E.M. and Agyarko, K. 2011. Does incorporation of cowpea-maize residue mixes influence nitrous oxide emission and mineral nitrogen release in a tropical luvisol? *Nutr. Cycl. Agroecosys.* 91: 281-292.
- Fujikawa, T. and Miyazaki, T. 2005. Effects of bulk density and soil type on the gas diffusion coefficient in repacked and undisturbed soils. *Soil Sci.* **170**: 892-901.
- Gao, J., Xie, Y., Jin, H., Liu, Y., Bai, X., Ma, D., Zhu, Y., Wang, C. and Guo, T. 2016. Nitrous oxide emission and denitrifier abundance in two agricultural soils amended with crop residues and urea in the north China plain. *Plos One* 11: e0154773.
- Garcia-Marco, S., Abalos, D., Espejo, R., Vallejo, A. and Mariscal-Sancho, I. 2016. No tillage and liming reduce greenhouse gas emissions from poorly drained soils in Mediterranean areas. Sci. Total Environ. 506-507: 512-520.
- Garland, G.M., Suddick, E., Burger, M., Horwath, W.R., Six, J. 2011. Direct N₂O emissions

- following transition from conventional till to notill in a cover cropped Mediterranean vineyard (*Vitis vinifera*). *Agric. Ecosyst. Environ.* **141**: 234-239.
- Guardia, G., Abalos, D., García-Marco, S., Quemada, M., Alonso-Ayuso, M., Cárdenas, L.M., Dixon, E.R. and Vallejo, A. 2016. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. *Biogeosciences* 13: 5245-5257.
- Harris, E., Ladreiter-Knauss, T., Butterbach-Bahl, K., Wolf, B. and Bahn, M. 2018. Land-use and abandonment alters methane and nitrous oxide fluxes in mountain grasslands. Sci. Total Environ. 628-629: 997-1008.
- Huang, Y., Long, XE., Chapman, S.J. and Yao, H. 2015. Acidophilic denitrifiers dominate the N₂O production in a 100-year-old tea orchard soil. *Environmental Science and Pollution Research* **22**(6): 4173-4182.
- Hyde, B.P., Hawkins, M.J., Fanning, A.F., Noonan, D., Ryan, M., O'Toole, P. *et al.* 2006. Nitrous oxide emissions from a fertilized and grazed grassland in the South East of Ireland. *Nutrient Cycl. Agroecosyst.* **75**: 187-200.
- Inubushi, K., Barahona, M.A. and Yamakawa, K. 1999. Effects of salts and moisture content on N₂O emission and nitrogen dynamics in Yellow soil and Andosol in model experiments. *Biol. Fertil. Soils* **29**(4): 401-407.
- Ishizuka, S., Iswandi, A., Nakajima, Y., Yonemura, S., Sudo, S., Tsuruta, H. and Murdiyarso, D., 2005. The variation of greenhouse gas emissions from soils of various land-use/cover types in Jambi province, Indonesia. *Nutr. Cycling Agroecosyst.* 71: 17-32.
- Jantalia, C., dos Santos, H., Urquiaga, S., Boddey, R. and Alves, B. 2008. Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil. *Nutr. Cycl Agroecosyst.* 82: 161-173.
- Jones, J., Savin, M.C., Rom, C.R. and Gbur, E. 2017. Denitrifier community response to seven years of ground cover and nutrient management in an organic fruit tree orchard soil. *Applied Soil Ecol* 112: 60-70.
- Justes, E., Mary, B. and Nicolardot, B. 1999. Comparing the effectiveness of radish cover

- crop, oilseed rape volunteers and oilseed rape residues incorporation for reducing nitrate leaching. *Nutr. Cycl. Agroecosys.* **55**: 207-220.
- Kallenbach, C.M., Rolston, D.E., and Horwath, W.R. 2010. Cover cropping affects soil N₂O and CO₂ emissions differently depending on type of irrigation. *Agric. Ecosyst. Environ.* **137**: 251-260.
- Kelliher, F.M., van Koten, C., Kear, M.J., Sprosen, M.S., Ledgard, S.F., de Klein, C.A.M., Letica, S.A., Luo, J. and Rys, G. 2014. Effect of temperature on dicyandiamide (DCD) longevity in pastoral soils under field conditions. *Agric. Ecosyst. Environ.* 186: 201-204.
- Kellum, D.S., Shukla, M.K., Mexal, J. and Deb, S. 2018. Greenhouse Gas Emissions from Pecan Orchards in Semiarid Southern New Mexico. *Hort Science* **53**(5): 704-709.
- Khalil, M.I. and Baggs, E.M. 2005. CH₄ oxidation and N₂O emissions at varied soil water-filled pore spaces and headspace CH₄ concentrations. *Soil Biol. Biochem.***37**(10): 1785-1794.
- Kitzler, B., Zechmeister-Boltenstern, S., Holtermann, C., Skiba, U. and Butterbach-Bahl, K. 2006. Controls over N₂O, NOx and CO₂ fluxes in a calcareous mountain forest soil. *Biogeosciences* 3: 383-395.
- Klefoth, R.R., Clough, T.J., Oenema, O. and Van Groenigen, J.W. 2014. Soil bulk density and moisture content influence relative gas diffusivity and the reduction of nitrogen¹⁵ nitrous oxide. *Vadose Zone Journal* **13**(11): 1-8.
- Krol, D.J., Forrestal, P.J., Lanigan G.J. and Richards, K.G. 2015. In situ N₂O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions. Science Total Environ. 511: 362-368.
- Li, G.D.D., Conyers, M.K., Schwenke, G.D., Hayes, R.C., Liu, D.L., Lowrie, A.J., Poile, G.J., Oates, A.A. and Lowrie, R.J. 2016. Tillage does not increase nitrous oxide emissions under dryland canola (*Brassica napus* L.) in a semiarid environment of south-eastern Australia. *Soil Res.* 54: 512-522.
- Linn, D.M. and Dornan, J.W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. *Soil Sci. Soc. Am. J.* **48**: 1267-1272.

- Linquist, B., van Groenigen, K.J., Adviento-Borbe, M.A., Pittelkow, C. and van Kessel, C. 2012. An agronomic assessment of greenhouse gas emissions from major cereal crops. *Global Change Biol.* **18**: 194-209.
- Lopez-Valdez, F., Fernández-Luqueno, F., Luna-Guido, M.L., Marsch, R., Olalde-Portugal, V. and Dendooven, L. 2010. Microorganisms in sewage sludge added to an extreme alkaline saline soil affect carbon and nitrogen dynamics. *Appl. Soil Ecol.* **45**(3): 225-231.
- Luo, G.J., Kiese, R., Wolf, B. and Butterbach-Bahl, K. 2013. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. *Biogeosciences* **10**: 3205-3219.
- MacKenzie, A.F., Fan, M.X. and Cadrin, F. 1998. Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. *J. Environ. Qual.* 27: 698-703
- Masters, B.L. 2019. Nitrous oxide emissions from soil in mango and banana fields: effects of nitrogen rate, fertiliser type, and ground cover practices. Masters (Research) Thesis, James Cook University. https://doi.org/10.25903/5e545c1348b4b.
- McGeough, K.L., Müller, C., Laughlin, R.J., Watson, C.J., Ernfors, M., Cahalan, E. and Richards, K.G. 2012. The effect of dicyandiamide addition to cattle slurry on soil gross nitrogen transformations at a grassland site in Northern Ireland. *Journal of Agricultural Science* 152: S125-S136.
- Metay, A., Oliver, R., Scopel, E., Douzet, J.M., Moreira, J.A.A., Maraux, F., Feigl, B.J. and Feller, C. 2007. N₂O and CH₄ emissions from soils under conventional and no-till management practices in Goiânia (Cerrados, Brazil). *Geoderma* **141**: 78-88.
- Millar, N. and Baggs, E.M. 2004. Chemical composition, or quality, of agroforestry residues influences N₂O emissions after their addition to soil. *Soil Biol. Biochem.* **36**(6): 935-943.
- Müller Júnior, V., Koucher, L.P., Souza, M., Lima, A.P., Kurtz, C., Couto, R.R., Lovato, P.E., Giacomini, S.J., Brunetto, G. and Comin, J.J. 2019. Nitrous oxide emissions in no-tillage onion

- (Allium cepa L.) crops are increased by oilseed radish cover crop and poultry manure application. Rev Bras Cienc Solo. 43: e0180116.
- Pang, J.Z., Wang, X.K., Mu, Y.J., Ouyang, Z.Y. and Liu, W.Z. 2009. Nitrous oxide emissions from an apple orchard soil in the semiarid Loess Plateau of China. *Biol. Fertil. Soils* **46**: 37-44.
- Pereira e Silva, M.C., Poly, F., Guillaumaud, N., van Elsas, J.D. and Salles, J.F. 2012. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH. *Frontiers in Microbiology* 3: 1-22.
- Pfab, H., Palmer, I., Buegger, F., Fiedler, S., Muller, T. and Ruser, R. 2012. Influence of a nitrification inhibitor and of placed N-fertilization on N₂O fluxes from a vegetable cropped loamy soil. *Agric. Ecosyst. Environ.* **150**: 91-101.
- Plaza-Bonilla, D., Ailvaro-Fuentes, J., Bareche, J., Pareja-Sánchez, E., Justes, E. and Cantero-Martínez, C. 2018. No-tillage reduces long term yield-scaled soil nitrous oxide emissions in rainfed Mediterranean agroecosystems: A field and modelling approach. *Agriculture, Ecosystems and Environment* 262: 36-47.
- Rabot E., Lacoste M., Hénault, C. and Cousin, I. 2015. Using X ray Computed Tomography to Describe the Dynamics of Nitrous Oxide Emissions during Soil Drying. *Vadose Zone Journal* **14**(8):1-10.
- Rabot, E., Hénault, C. and Cousin, I. 2016. Effect of the soil water dynamics on nitrous oxide emissions. *Geoderma* **280**: 38-46.
- Ravishankara, A.R., Daniel, J.S. and Portmann, R.W. 2009. Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century. *Science* **326**(5949): 123-125.
- Rochette, P. 2008. No-till only increases N_2O emissions in poorly-aerated soils. *Soil Till. Res.* **101**: 97-100.
- Rowlings, D.W., Grace, P.R., Scheer, C. and Kiese, R. 2013. Influence of nitrogen fertilizer application and timing on greenhouse gas emissions from a lychee (*Litchi chinensis*) orchard in humid subtropical Australia. *Agric. Ecosys. Environ.* 179: 168-178.
- Russenes, A.L., Korsaeth, A., Bakken, L.R. and Dörsch, P. 2019. Effects of nitrogen split

- application on seasonal N_2O emissions in southeast Norway. *Nutrient Cycling in Agroecosystems* 115: 41-56.
- Simek, M., and Cooper, J.E. 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. *Eur. J. Soil Sci.* **53**: 345-354.
- Sánchez-Martýn, L., Arce, A., Benito, A., Garcia-Torres, L. and Vallejo, A. 2008. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. *Soil Biol. Biochem* **40**: 1698-1706.
- Schindlbacher, A., Zechmeister-Boltenstern, S. and Butterbach- Bahl, K. 2004. Effects of soil moisture and temperature on NO, NO₂, and N₂O emissions from European forest soils. *J. Geophys. Res.* **109**: D17302.
- Schmidt, H.P., Kammann, C., Niggli, C., Evangelou, M.W.H., Mackie, K.A. and Abiven, S. 2014. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. *Agric. Ecosyst. Environ.* 191: 117-123.
- Singurindy, O., Richards, B.K., Molodovskaya, M. and Steenhuis, T.S. 2006. Nitrous oxide and ammonia emissions from urine treated soils: texture effect. *Vadose Zone Journal* 5(4): 1236-1245.
- Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J. and Rey, A. 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. *Eur. J. Soil Sci.* 54: 779-791.
- Stacey, K.F., Lark, R.M., Whitmore, A.P. and Milne, A.E. 2006. Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil. *Geoderma* **135**: 107-117.
- Velthof, G.L., Hoving, I.E., Dolfing, J., Smit, A., Kuikman, P.J. and Oenema, O. 2010. Method and timing of grassland renovation affects herbage yield, nitrate leaching, and nitrous oxide emission in intensively managed grasslands. *Nutr Cycl Agroecosyst* 86: 401-412.
- Verhoeven, E. and Six, J. 2014. Biochar does not mitigate field-scale N₂O emissions in a Northern

- California vineyard: An assessment across two years. *Agric. Ecosyst. Environ.* **191**: 27-38.
- Volpi, I., Laville, P., Bonari, E., Nasso, N.N. and Bosco, S. 2017. Improving the management of mineral fertilizers for nitrous oxide mitigation: The effect of nitrogen fertilizer type, urease and nitrification inhibitors in two different textured soils. *Geoderma* 307: 181-188.
- Wang, J., Zhu, B., Zhang, J.B., Müller, C. and Cai, Z.C. 2015. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. Biochem. 91: 222-231.
- Wang, Y., Guo, J., Vogt, R.D., Mulder, J., Wang, J. and Zhang, X. 2018. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. *Global Change Biology* 24: 617-626.
- Weitz, A.M., Linder, E., Frolking, S., Crill, P.M. and Keller, M. 2001. N₂O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. *Soil Biol. Biochem* 33: 1077-1093.
- Wu, X., Wang, F., Li, T., Fu, B., Lv, Y. and Liu, G. 2020. Nitrogen additions increase N₂O emissions but reduce soil respiration and CH₄ uptake during freeze-thaw cycles in an alpine meadow. *Geoderma* **363**: 114157.
- Xu, J., Wei, Q., Yang, S., Wang, Y. and Lv, Y. 2016. Diurnal pattern of nitrous oxide emissions from soils under different vertical moisture distribution conditions. *Chilean J Agric Res.* 76(1): 84-92.
- Yao, Z., Wei, Y., Liu, C., Zheng, X. and Xie, B. 2015. Organically fertilized tea plantation stimulates N₂O emissions and lowers NO fluxes in subtropical China. *Biogeosciences* **12**: 5915-5928.
- Yin, M., Gao, X., Tenuta, M., Li, L., Gui, D., Li, X. and Zeng, F. 2020. Enhancement of N₂O emissions by grazing is related to soil physicochemical characteristics rather than nitrifier and denitrifier abundances in alpine grassland. *Geoderma* 375: 114511.
- Yu, Y., Jia, H. and Zhao, C. 2018. Evaluation of the effects of plastic mulching and nitrapyrin on

- nitrous oxide emissions and economic parameters in an arid agricultural field. *Geoderma* **324**: 98-108.
- Yu, Y., Zhao, C., Zheng, N., Jia, H. and Yao, H. 2019. Interactive effects of soil texture and salinity on nitrous oxide emissions following crop residue amendment. *Geoderma* **337**: 1146-1154.
- Zhang, J.B., Sun, W.J., Zhong, W.H. and Cai, Z.C. 2014. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. *Soil Biol. Biochem.* **76**: 143-148.
- Zhang, K., Zhu, Q., Liu, J., Wang, M., Zhou, X., Li, M., Wang, K., Ding, J. and Peng, C. 2019.

- Spatial and temporal variations of N₂O emissions from global forest and grassland ecosystems. *Agric. Forest Meteorol.* **266-267**: 129-139.
- Zhu, T., Zhang, J., Huang, P., Suo, L., Wang, C., Ding, W., Meng, L., Zhou, K. and Hu, Z. 2015. N₂O emissions from banana plantations in tropical China as affected by the application rates of urea and a urease/nitrification inhibitor. *Biology and Fertility of Soils* **51**: 673-683.
- Zhu, X., Chang, L., Li, J., Liu, J., Feng, L. and Wu, D. 2018. Interactions between earthworms and mesofauna affect CO₂ and N₂O emissions from soils under long-term conservation tillage. *Geoderma* 332: 153-160.

Received: August 16, 2019; Accepted: November 22, 2019