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ABSTRACT

Rapid and reliable assessment of soil health parameters is an essential requirement for sustainable
management of the resources. Diffuse reflectance spectroscopy has emerged as a new tool to obtain
both qualitative and quantitative information on soil properties and nutrient contents in a non-invasive
manner from a single reflectance spectra. However, the potentials of various models to predict soil
properties using spectral reflectance have not been fully explored. In this study, prediction of various
properties of soil, collected from an ongoing field experiment on tillage, residue mulch and nitrogen
interaction in maize-wheat cropping system were attempted from the soil spectral reflectance using four
multivariate regression models viz., partial least square regression (PLSR), support vector regression
(SVR), random forest (RF) and multivariate adaptive regression splines (MARS) using R software. Out
of the 108 data points, 2/3“ data was used for calibration of these models and 1/3 data was used for
validation of these models. Among the four multivariate regression models using spectral reflectance,
the RF model could account for 59, 48 and 54% variation in the observed sand, silt and clay content,
respectively. The SVR model could account for 66% variation in the MWD whereas the RF model
could account for 32% variation in WSA. The RF model could account for 81% variation for both the
observed TOC and EC whereas the SVR model could account for 59% in the observed soil pH. The RF
model could account for 61, 80 and 78% variation in the observed available nitrogen, phosphorus and
potassium content, respectively. The prediction of soil biological parameters was poor. The RF model
could account 44% variation in observed SMBC whereas the SVR model could account maximum 38%
variation in observed DHA. Thus different chemical properties and selected physical properties of soil
can be successfully assessed from spectral reflectance using different multivariate regression models.
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Introduction

Rapid, reliable, cost effective and eco-friendly
assessment of soil health has become a focus area
in order to ensure their sustainable management.

*Corresponding author,
Email: kk.bandyopadhyay @gmail.com

However, determination of soil health parameters
at large scale is cumbersome and involves
investment of money, manpower and time.
Conventionally, determination of soil health
parameters is performed under laboratory
conditions. Among the soil health attributes,
determination of soil chemical propertiesis based
on wet chemistry with tedious and time-
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consuming sample preparation and analyses steps
whereas assessment of soil physical and biological
attributes generally take a longer time than
chemical attributes. Soil properties vary widely
both in time and space (Minasny and Hartemink,
2011). Consequently, rapid and near-real time
assessment of soil properties remains a formidable
challenge despite decades of research and
development in soil testing. Over the past few
decades, remote sensing approaches provide some
solution for rapid soil assessment (Vasques et al.,
2010). These approaches are rapid, non-
destructive and have large spatial coverage. In
general, soils are opaque to most of the remote
sensing methods. For example, microwave
radiations penetrate only afew centimeters of the
topsoil; whereas visible (VIS) and infrared
radiations can barely penetrate through the soil
surface. Remote sensing data have been used for
soil classification, soil resources mapping (Ray et
al., 2002; 2004), soil moisture assessment
(Engman and Chauhan, 1995) and soil
degradation (salinity) mapping (Metternicht and
Zinck, 2003) among many others. Particularly,
hyperspectral remote sensing (HRS) is emerging
as a promising tool for its capability to measure
the reflectance of earth surface features such as
soil, water, vegetation, etc. at hundreds of
contiguous and narrow wavelength bands.
Availability of that large pool of spectral
information offers an opportunity to estimate
multiple soil attributes from the same reflectance
spectra with greater specificity than their
multispectral counterpart.

Proximal soil sensing refers to metering and
data processing technology that allows in situ
determination of physical, chemical, and other
soil characteristics while placing sensor systems
in close proximity to the soil being evaluated.
Spectral reflectance of soil samples collected in
the laboratory using contact probe can be used
for assessing different soil attributes. Proximal
Diffuse Reflectance Spectroscopy (DRS) in the
Visible (VIS), Near-Infrared (NIR), and Shortwave-
Infrared (SWIR) regions (350-2500 nm) forms
the basis of Hyperspectral remotesensing. When
soil is exposed to electromagnetic energy,
chemical bonds of different molecules vibrate at
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characteristic frequencies, which is captured in
the spectral reflectance of soil. Energy absorbed,
reflected and scattered in the process may,
therefore, be related to specific wavelengths (Ben-
Dor and Banin, 1995). In particular, the speci-
ficity (reflectance at characteristic wavelength)
allows for the assessment of different soil
attributes once spectral reflectance is known and
a relationship between the spectral feature and
soil attribute is known a priori. Thus, spectral
signatures are often considered as inherent soil
properties that vary across different soils (Ben-
Dor et al., 2009). So diffuse reflectance
spectroscopy has emerged as a new tool to obtain
both qualitative and quantitative information on
soil properties and nutrient contents in a non-
invasive manner from a single reflectance spectra.
L aboratory-scale studies have clearly shown that
the DRS approach may be used for estimating
several soil properties such as soil texture (Bilgili
et al., 2010), electrical conductivity (EC)
(Shrestha, 2006), cation exchange capacity (CEC)
(Fox and Metla, 2005), organic carbon (OC)
content (Galvao and Vitorello, 1998; Singh et al.,
2013), nutrient content such as nitrogen (N)
(Véagen et al., 2006), phosphorus (P), potassium
(K) (Mouazen et al., 2007), iron (Fe) content
(Galvao and Vitorello, 1998), soil moisture
content (Carlson et al., 1995), carbonates
(Lagacherie et al., 2008) and hydraulic properties
(Santra et al., 2009). Recently, the DRS approach
has been shown to be successfully used for
estimating some of the soil physical parameters
(median aggregate diameter and standard
deviation of lognormal aggregate size distribution
function of soils (Sarathjith et al., 2014). Machine
learing techniques are used for prediction of
different soil and plant parameters using their
spectral reflectance at characteristic wavelengths.
Silva and ten Caten (2016) reported that sand
content (R? = 0.81), clay content (R? = 0.80) and
less satisfactory for silt content (R? = 0.70) can
be predicted by PLSR model. Artificial neural
networks (ANN) using a spectrum (400-1100 nm)
was found as a precise detector of SOM (R? =
0.86) (Daniel et al., 2003) whereas a support
vector machine regression (SVMR) and a
successive projections algorithm (SPA) model



90 Journal of Agricultural Physics

(SPASVMR model) have been used for improving
the accuracy of soil organic carbon (SOC) which
has resulted from integrating the laboratory-based
visible and near-infrared (VIS/NIR, 350-2500
nm) spectroscopy of soils (Peng et al., 2014).
Nawar et al. (2014) reported better prediction of
soil salinity using MARS (R? = 0.73, RMSE =
6.53, and RPD = 1.96), than PLSR model (R? =
0.70, RMSE = 6.95, and RPD = 1.82). Moreover,
the authors emphasized that MARS gives very
good results for prediction of soil salinity,
especially under high salinity levels. Mohamed et
al. (2016) reported that SMLR model can be used
for estimation of concentrations of heavy metals
with high accuracy with R? of 0.82, 0.75 and 0.65
for Cr, Mn and Cu, respectively.

Tillage and crop residue mulch treatments
modify the physical, chemical and biological
properties of soil. Increase in water stable
aggregates and mean weight diameter (MWD) of
water stable aggregates (WSA) under no tillage
than under conventional tillage has been reported
by Abid and Lal (2008). Since soil aggregates are
protected under no till practices, it is expected to
contain higher SOC storage than conventional
tillage system. Hati et al. (2014) found that SOC
content was the highest in NT (8.6 g kg') and the
lowest in CT (6.5 g kg?) in 0-5 cm soil layer
where as it was higher in RT and MB than in CT
in the same soil layer under soybean-wheat
cropping system. Surface retention or
incorporation of crop residue and belowground
biomass under NT and CT decreased pH of the
soil. But, pH decline was more pronounced under
NT than CT at 0-2.5 cm whereas there was no
significant effect of tillage on pH throughout 2.5-
20 cm profile (Mrabet et al., 2001). Sharma et al.
(2011) found that conservation tillage increased
the soil respiration and soil microbial biomass
carbon by 81.1 and 104 %, respectively as comp-
ared to conventional tillage during wheat
cultivation. However assessment of these changes
in soil properties using remote sensing techniques
has not been attempted.

In this study, an attempt was made to estimate

some selected physical, chemical and biological
properties of soil using DRS technology. The
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objective of this study was to examine the
suitability of different multivariate regression
models (partial least square regression (PLSR),
support vector regression (SVR), random forest
(RF) and multivariate adaptive regression spline
(MARY)) based on spectral reflectance to estimate
the selected soil attributes under different tillage,
residue mulch and nitrogen management
practices.

M aterials and M ethods

Study area and soil sampling

Field experiments were conducted during
2017-18 in the MB-4C farm of ICAR-Indian
Agricultural Research Institute, New Delhi (28°
35'N latitude, 77°12°E longitude and at an altitude
of 228.16 m above mean sea level) in an ongoing
long term field experiment (since 2014) under
maize-wheat cropping system. The experiment
was laid out a split-split plot design, with two
levels of tillage as main plot factor (Conventional
tillage (CT) and No Tillage (NT), two levels of
residue as subplot factor (with residue @ 5t ha'
(R+) and without residue (RO), and three levels
of nitrogen as sub-sub plot factor (50% (N50),
100% (N100) and 150% (N150) of the recomm-
ended dose of nitrogen), replicated three times.

Soil samples from 0-5, 5-15 and 15-30 cm
soil depths were collected using a bucket type
soil core sampler from three random locations in
each plot after harvest of wheat during 2016-17.
Each sample was divided into three parts: the first
part was stored in arefrigerator for determination
of soil microbial biomass carbon (SMBC) and
the second part was dried in shade, processed and
passed through 2-mm sieve for analysis of soil
chemical parameters and spectral reflectance
measurement. The third part, passed through 8-
mm sieve and retained in 4-mm sieve was used
for aggregate analysis.

Laboratory analysis of soil samples

Hydrometer method (Bouyoucos, 1962) was
used to determine sand, silt and clay percentage
for each sample. The aggregate size distribution
of soil (mean weight diameter and water stable
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aggregate) was determined by wet sieving method
using Yodder's apparatus (Y odder, 1936). Soil
pH and EC were determined in 1:2.5 soil-water
suspension using combined electrode for pH and
Conductivity Bridge for EC (Jackson, 1973).
Total organic carbon was determined by auto-
matic elemental analyser (Vario EL, Elementar
Analysen systeme GmbH, Hanau, Germany).
Available N (Subbiah and Asija, 1956), available
P (ascorbic acid blue color method; Watanabe and
Olsen, 1965) and available K (flame photometer
method; Hanway and Heidel, 1952) in the soil
samples were determined as per standard proce-
dures. The microbial biomass carbon (MBC) in
soil was determined by fumigation extraction
method as described by Jenkinson and Powlson
(1976) and Dehydrogenase activity in soils was
determined as per Klein et al. (1971) method.

Soil reflectance measurements

The reflectance spectra of soil samples (air-
dried, crushed and 2 mm sieved) were collected
using spectroradiometer with contact probe. The
soil was only illuminated by a constant light
source inside the contact probe (Contact Probe,
Analytical Spectral Devices, Boulder, CO) after
calibration of sensor using a white spectral panel.
The Viewspec Pro software of the instrument has
been set to process reflectance at 1 nm interval.
Spectral reflectance was derived as the ratio of
reflected radiance to incident radiance estimated
by a calibrated white reference.

Spectroscopic Data Pre-Processing

In order to boost the predictive power of
multivariate calibration models, spectral data are
often preprocessed prior to data analysis as
variation in the predictor variables that is
unrelated to response variable may reduce the
predictive ability of the models. The aim of pre-
processing is to reduce the effects of random noise
and improve signal to noise ratio. In the present
study the data was filtered using Savitzky-Golay
filter (Savitzky and Golay, 1964).

Multivariate Techniques

Soil and plant parameters were assessed from
the spectral reflectance using different multi-
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variate regression models like partial least square
regression (PLSR), multivariate adaptive regression
splines (MARS), support vector regression (SVR),
and random forest (RF) through R software.

Accuracy assessment

Calibration of the four multi linear regression
models (PLSR, MARS, SVM and RF) for soil
properties was done using 2/3 of the total (108)
soil samples (training data set). Validation of
those models was done using 1/3 of the total
soil samples (testing data set) which were not used
for model calibration.

The accuracy of the model prediction was
tested using different statistical indices like R?,
normalized root mean squared error (nRM SE) and
ratio of performance to deviation (RPD).

The root mean square error (RM SE) was used
to calculate the error between the estimated and
measured results.

: 1 n :
RMSE =, [— P-0
1/”2( -0,) ..(1)

The normalized RM SE is computed as RM SE
as a percentage of the observed mean value.

NRMSE = (RMSE/O) x 100 .2

where, P, is predicted value, O, is observed value,
Ois observed mean and n is number of samples.
NRMSE (%) shows the relative difference
between the predicted and observed data. The
prediction is considered excellent if the NnRMSE
< 10 %, good if 10—20 %, fair if 2030 %, poor if
> 30 % of the observed mean (Jamieson et al.,
1991).

The appropriateness of a prediction was also
evaluated by the ratio of performance to deviation
(RPD), which is the ratio between the standard
deviation (SD) of the validation sample set and
standard error of prediction (SEP) (Willimas and
Norris 1987):

RPD = SD/SEP ..(3)

N 1 pi iy
SEI =\/ﬁ;(n—of} .(4)
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Where P, is predicted value, O, is observed value
and n is number of samples.

Chang et al. (2001) classified prediction
accuracies into accurate (RPD > 2), moderate (1.4
< RPD < 2), and poor (RPD < 1.4), although
such a classification rule is still being debated
(Bellon-Maurel et al., 2010).

Results and Discussion
Soil reflectance spectra

Reflectance spectra of soil samples as
influenced by tillage, residue and nitrogen
management are presented in Fig. 1. There was a
continuous increase in reflectance with the
increase in wavelength. There were distinct dips
in the soil reflectance spectra at 1400 and 1900
nm due to water absorption band and at 2200 hm
due to hydroxyl group of soil. Averaged over
residue and nitrogen management, the highest soil
reflectance was recorded at no tillage at 15-30
cm soil depth and lowest soil reflectance was
recorded in no tillage at 5-15 cm soil depth.
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Averaged over tillage and nitrogen management,
highest soil reflectance was recorded in no residue
mulch (RO) treatment at 15-30 cm soil depth and
lowest soil reflectance was recorded in no residue
mulch treatment (RO) at 5-15 cm soil depth.
Averaged over tillage and residue management,
highest soil reflectance was recorded in N150
treatment at 15-30 cm soil depth and lowest soil
reflectance was recorded in N100 treatment at 5-
15 cm soil depth. In general it was observed that
soil reflectance increased for lower depth soil and
in the absence of crop residue mulch. Lower
organic carbon content in soil at lower depth
under no mulch treatment might be responsible
for the higher spectral reflectance at this depth.
Saxena et al. (2003) reported that the soil spectral
reflectance decreased with increase in organic
carbon content of soil.

Descriptive statistics

Descriptive statistics of 13 soil parameters
(108 data set) viz., sand, silt, clay, mean weight
diameter, water stable aggregate, total organic
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Fig 1. Soil reflectance spectra at 0-5, 5-15 and 15-30 cm soil depth as influenced by tillage, residue and N

management
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carbon, pH, electrical conductivity, available
nitrogen, available phosphorus, available pota-
ssium, soil microbial biomass carbon, dehydro-
genase activity pooled over all treatments for
0-5, 5-15 and 15-30 cm soil depths is presented
in Table 1. The coefficient of variance of soil
parameters ranged from 3.51 (sand) to 45.5%
(dehydrogenase activity).

Calibration of the models

Calibration of four multivariate regression
models viz., partial least square regression
(PLSR), multivariate adaptive regression splines
(MARS), support vector regression (SVR), and
random forest (RF) based on spectral reflectance
was carried out using R software and their relative
performance was judged by comparing the
NRMSE and the R? (Table 2). During calibration
the RF model performed best for prediction of
sand, silt and clay content where it could account
93, 92 and 93% variation in the observed sand,
silt and clay with an nRMSE of 1.6, 2.29 and
4.1%, respectively. During calibration. the SVR
model performed best for perdiction of MWD
with a R? and nRM SE value of 0.81 and 8.76%,
respectively whereas for the calibration of WSA
prediction RF model performed best with a R?
and NRMSE value of 0.95 and 5.91%, respecti-
vely. During calibration, the RF model performed
best for prediction of TOC, pH and EC where it
could account 94, 91 and 91% variation in the
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observed TOC, pH and EC with an nRMSE of
2.69, 1.77 and 15.25%, respect-ively. During
calibration, the RF model performed best for
prediction of available N, P, K, SMBC and DHA
where it could account 91, 92, 93, 94 and 93%
variation in the observed available N, P, K,
SMBC and DHA with an nRM SE of 4.52, 11.22,
15.76, 17.87 and 17.79%, respectively. So RF
model performed marginally better than the other
models for predicting different soil parameters
with relatively lower nRMSE and higher R2
Generally, the machine learning methods (RF,
SVR, MARS) were found to be more accurate
than PLSR using the RSME of calibration for
assessing model performance (Zakaria and Shabri,
2012; Bricklemyer et al., 2007).

Validation of the models

The model performance statistics for the
validation of different soil properties using 1/3"
of total dataset is presented in Table 3. It was
observed that among these four models, RF model
performed best for prediction of sand, silt and
clay content. It could account for 59, 48 and 54%
variation in the observed sand, silt and clay
content with an nRMSE of 1.97, 4.13 and 6.76%
and RPD of 1.51, 1.34 and 1.36, respectively.
However, this model could be considered as a
moderate predictor of sand whereas poor for silt
and clay based on the RPD values. Low
variability in texture within afield due to different

Table 1. Descriptive statistics of soil properties (pooled over treatments and depths)

Parameters No Min Max Range Mean Std. Dev. CV  std. Error
Sand (%) 108 52.00 61.79 9.79 55.71 1.95 3.51 0.19
Silt (%) 108 26.29 35.40 9.11 31.45 1.86 5.86 0.18
Clay (%) 108 9.55 15.80 6.25 12.64 1.22 9.64 0.12
MWD (mm) 108 0.51 1.29 0.78 0.90 0.18 20.19 0.02
WSA (%) 108 3211 75.31 43.20 56.43 7.73 13.69 0.74
TOC (%) 108 0.53 0.95 0.42 0.75 0.08 10.95 0.01
pH 108 6.88 8.49 161 7.86 0.33 4.25 0.03
EC (dsm?) 108 0.19 0.93 0.42 0.75 0.08 10.95 0.01
Av-N (mg kg?) 108 39.00 78.40 39.40 55.66 6.92 12.43 0.67
Av-P (mg kg?) 108 2.00 9.00 7.00 3.90 1.39 35.63 0.13
Av-K (mg kg?) 108 91.00 48750 396.50 185.27 77.70 41.94 7.48
SMBC (ug g* soil) 108 105.80 43850 332.70 23898 93.92 39.30 9.04
DHA (ug TPF g* soil day?) 108 3.09 21.64 18.55 10.09 4,59 45.47 0.44
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Table 2. Calibration of soil parameters using multivariate regression models

PLSR SVR RF MARS
Parameters RZ nRMSE R’ nRMSE R’ nRMSE R’  nRMSE
Sand (%) 0.55 2.50 0.84 15 0.93 1.6 0.76 1.78
Silt (%) 0.5 4.33 0.82 2.72 0.93 2.29 0.61 3.72
Clay (%) 034 1501 072 5.17 0.92 4.10 0.59 6.23
MWD (mm) 050 1414 081 8.76 083 1018 050  13.92
WSA (%) 036 1146  0.80 6.37 0.95 5.91 0.66 8.13
TOC (%) 0.70 5.80 0.99 1.02 0.94 2.69 0.89 3.49
pH 0.70 2.52 0.79 1.97 0.91 1.77 0.65 2.44
EC (ds m?) 086 1391 091 1167 091 1525 071 2001
Available N (mg kg 0.5 8.60 0.83 5.14 0.91 452 0.73 6.19
Available P (mg kg 0.6 18.83 0.8 1319 092 1122 0.7 11.73
Available K (mg kg™ 0.6 24.44 0.9 1265 093 1576 0.8 16.99
SMBC (ug g* soil) 037 348 077 2113 094 1787 047  30.69
DHA (ug TPF g’ soil day) 052 3234 069 2506 093  17.79 068  25.19

management practices may be the cause for such
performance of the models. With respect to
prediction of mean weight diameter (MWD), SVR
model performed the best and it could account
for 66% variation in the observed MWD with an
NRMSE of 12.8% and RPD of 1.65. However,
the RF model could account for maximum 32.3%
variation in the observed WSA with an nRMSE

of 10.4% and RPD of 1.19. For MWD and WSA
predication, most of the models performed poorly.
Use of disturbed soil sample (sieved) for
capturing spectral signature may be the reason
for poor prediction as MWD and WSA are
determined from undisturbed soil aggregates. The
RF model performed best for prediction of soil
EC, TOC, available P and available K. It could

Table 3. Prediction of soil parameters using multivariate regression models

Parameters PLSR SVR RF MARS

R2 nRMSE RPD R? nRMSE RPD R?® nRMSE RPD R?! nRMSE RPD
Sand (%) 012 294 104 042 275 111 059 197 151 043 250 124
Silt (%) 037 421 117 047 436 123 048 413 134 037 491 102
Clay (%) 025 838 110 041 732 126 054 676 136 030 842 110
MWD (mm) 032 17.76 119 066 1280 165 061 1354 156 043 1633 1.29
WSA (%) 018 11.36 110 020 11.73 1.06 032 1040 119 0.22 1208 1.02
TOC (%) 061 721 157 077 614 18 08l 492 230 070 622 182
pH 057 335 134 059 285 157 053 308 146 044 353 127
EC(ds m?) 077 1952 186 068 2135 170 081 19.16 189 054 2558 142
Available N 038 1056 120 065 828 154 061 819 155 056 1004 1.28
(mg kg)
Available P 058 1859 152 067 1749 161 080 1373 205 048 2297 123
(mg kg)
Available K 053 3174 144 055 3072 149 078 2276 200 0.70 2549 1.79
(mg kg)
SMBC 021 3003 111 038 2897 115 044 2566 130 021 3119 1.07
(g g* soil)
DHA (ug TPF  0.27 4170 117 019 4633 104 035 39.15 123 0.38 39.09 1.23

g? soil day?)
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account 81, 94, 80 and 78% variation in the
observed soil EC, TOC, available P and available
K with an nRMSE of 19.16, 4.9, 13.73 and
22.76% and RPD of 1.89, 2.30, 2.05 and 2.00,
respectively. Based on the RPD values, the RF
model performed as accurate predictor for TOC,
available P and available K whereas other models
performed as moderate predictors. In general,
many studies reported that RF served as better
predictor compared to support vector machine
(SVM) for most of the soil parameters (Lief3 et
al., 2016; Siegmann and Jarmer, 2015; Maet al.,
2016; Fassnacht et al., 2014). Rossel et al. (2010)
reported that RF had better prediction accuracy
compared to stochastic gradient boosting (SGB).
The SVR model performed best and could account
59 and 65 % variation in observed pH and
available N with nRM SE of 2.85 and 8.28% and
RPD of 1.57 and 1.54, respectively. Hitziger and
Liel3 (2014) found that SVM and SGB were
superior to the RF in prediction of some soil
properties (sand and clay). Among the four
models, the RF model performed best for the
prediction of SMBC and could account 44 %
variation in observed SMBC with nRMSE of
25.66% and RPD of 1.30 whereas MARS model
could account 38 % variation in observed SMBC
with nRMSE of 39.09% and RPD of 1.23. Thus,
all models performed as poor predictor for soil
biological parameters. Biological properties like
SMBC and DHA are determined on fresh or field
moist soil samples whereas the spectra was taken
in from processed soil samples. So the spectral
reflectance could not capture changes in these
biological properties. Reeves et al. (2000)
observed only moderate accuracies for prediction
of four enzymes (arylsulfatase, dehydrogenase,
phosphatase and urease) with a coefficient of
determination (R?) ranging from 0.43 to 0.77 in
the cross-validation. Thusin this study, RF model
performed better than SVR for prediction of most
of the parameters. However, SVR model
performed better than MARS and PLSR.
Nonparametric models such as RF, SVM and
SGB have been found superior to MLR due to
their ability to handle non-linear relations and
multi-source data (Hahn and Gloaguen, 2008;
Bricklemyer et al., 2007; Walinder, 2014).
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Conclusions

The present study concluded that the
multivariate regression model, random forest (RF)
could satisfactorily assess sand, silt, clay, TOC,
EC, available P, K content of soil whereas support
vector regression (SVR) model could satisfactor-
ily assess soil pH and available N using soil
reflectance spectra. So different chemical
properties and selected physical properties of soil
can be satisfactorily assessed from diffuse
reflectance spectra using different multivariate
regression models. The prediction of soil
biological parameters using spectral reflectance
spectrawas not satisfactory.
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