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ABSTRACT

In recent times, online soil parameter measurement is extremely essential for site-specific applications
using different controlled inputs in the agriculture farm areas. Especially for smart agriculture, online
soil data acquisition, measurement and data processing are highly encouraging. As of now, research
papers published are of traditional types and provide much detail about theoretical and laboratory
experiments on various contact as well as non-contact sensing methodologies. But these literatures
don‘t specify clear-cut applications and usefulness of specifications, particularly for soil parameter
sensing in agriculture. In this paper, a detailed literature study of sensor system technologies on soil
parameter sensing methodology as well as its implications and usefulness for precision agriculture have
been discussed. Unique categorizations of sensing technologies have been carried out in this work with
their potentials and limitations and soil parameter sensing methodology for agriculture. Six subcategories
can be identified, which plays key roles. These are optical soil sensing, conductivity and permittivity
type soil sensing, radiometry type soil sensing, strength based sensing, electrochemical sensing and lab-
on-a-chip based soil sensing techniques. Finally, a comprehensive review of performance based
comparative analysis is accomplished on different soil parameter sensors for the implementation of
precision agriculture.
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measurement of a soil property. In similar context,
many researchers have evaluated sensing
technologies for on-line detection of soil
macronutrients e.g, nitrogen (N), phosphorus (P)
and potassium (K), whereas some of them
reviewed the sensing technologies for precision
crop production which emphasis on crop and
canopy mapping. The sensor based agriculture
procedure plays a vital role in the implementation
of precision agriculture, which is accomplished
by accumulating real-time data on weather,
quality of air, soil parameters, crop maturity,
equipment and labor availability. Typically,
agriculture can be used by accomplishing tasks
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Introduction

Sensor based soil analysis provides many
advantages over conventional laboratory methods
such as increased efficiency, collection of dense
datasets which is helpful for better analysis, on-
demand analysis and construction of agricultural
prescription maps. Adamchuk et al. (2004)
provided a comprehensive review of technologies
used only for direct measurement of soil
properties. This paper attempts to link between
the physical principles of sensing methods and
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like planting or harvesting against a
predetermined schedule. But by utilizing precision
agriculture, many predictions are possible that
may minimize the planting, fertilizing and
harvesting cost through enhanced efficiency all
of which increase profits by conserving
environment with all the benefit of the farmers.
Precision agriculture is usually an
environmentally friendly strategy, through which
farmers can adjust the employment of inputs to
reply to variable soil and crop conditions in a
field. Using precision agriculture along with the
involvement of ICT (Information and
Communication Technology), data collection,
processing and analysis can be performed in a
control center, which can help farmers to look at
the finest decisions for planting, fertilizing and
harvesting crops. To accomplish this, new soil
sensors and sensing mechanisms should be
developed to characterize the soil permitting
efficient site-specific soil management. The
sensor based soil analysis provides several
features over conventional laboratory methods as
well as increased efficiency, number of dense
datasets that would be ideal for better analysis,
on-demand analysis and construction of
prescription maps. This paper tries to link the
physical principles of sensing methods and
measurement of soil properties. Potentials and
limitations of different sensing technologies are
also discussed. Relationship between soil
information collected using the sensors for site-
specific applications of inputs are discussed, along
with the most accurate method to measure soil
parameters for implementation in precision
agriculture. Finally a crop-wise soil nutrient
requirement along with best suitable soil
parameter sensing techniques to accomplish ICT
based approach in precision agriculture is
discussed.

Sensors for soil analysis in precision
agriculture

The soil parameter measuring sensors can be
grouped in seven major classes based on their
operation and design concepts viz., electrical and
electromagnetic, radiometric and optical, acoustic,
mechanical, electrochemical and pneumatic soil

sensors (Adamchuk et al., 2004). The
performance of these sensors varies due to
different soil types, parent materials, soil and
environmental factors like water content, soil
temperature and environmental temperature,
humidity, organic matter, topography, soil color.
In many articles, following six distinct categories
are suggested for soil parameter measurement
methodologies. Soil parameter sensing using 1.
optical principle (e.g. Spectroscopy); 2. electrical
conductivity, resistivity and permittivity ([e.g.
EC, TDR, FDR probe); 3. passive radiometry
principle (e.g. Microwave and gamma ray); 4.
strength based sensing (e.g. DST and TST); 5.
electrochemical (e.g. ISE and ISFET); and 6. lab-
on-a-chip methodology (Fig. 1).

The performance of all of the above sensors
differs caused by different soil types, parent
materials, soil and environmental factors like
water content, soil temperature and environmental
temperature, humidity, organic matter,
topography, soil colour.

Sensors using optical principle

These sensors operate on the principle of
acquiring reflected energy spectrum from soil
samples. To generate a spectrum, radiation
containing relevant frequencies in a particular
range is directed to the sample. Depending on the
constituents present in the soil, the radiation
causes individual molecular bonds to vibrate,
either by bending or stretching. These vibrations
lead to absorption of light, to various degrees,
with a specific energy quantum corresponding to
the difference between two energy levels. As the
energy quantum is directly related to frequency,
the resulting absorption spectrum produces a
characteristic shape that can be used for analytical
purposes. In the visible range (400–780 nm),
absorption bands related to soil colour are due to
electron excitations, which assist in measurement
of soil organic matter (SOM) and moisture (MC)
content. However, in the NIR range (vis-NIR
range is around 800-2500 nm), the overtones of
OH and overtones and/or combinations of C-H +
C-H, C-H + C-C, OH+ minerals, and N-H are
important for the detection of SOM, MC, clay
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Fig. 1. Classification hierarchy of different soil sensors along with the subcategories

minerals, and nitrogen (Adamchuk et al., 2004).
Table 1 demonstrates a comprehensive account
on the measurements of soil parameters using NIR
spectroscopy in laboratory condition. The items
studied with the measurement of soil parameters
using NIR spectroscopy during in-situ condition
is shown in Table 2. In-situ sensing devices are
in contact with the object. A comparative study
on MIR spectroscopy for measurement of soil
parameters is given in table 3, and the
measurement of soil parameters using NIR
spectroscopy in online (Continuous sensing and
sensing device can be mobile) condition is
described in Table 4.

Xiaofei (2014) have developed a NIR-based
portable detector of soil total N content that
measures spectral data at 940, 1050, 1100, 1200,
1300, 1450, and 1550 nm. In this work, soil

samples were collected from a farm in Beijing,
China, and scanned using the detector to obtain
their absorbance data under varying soil moisture
and particle size. The detector used here is an
InGaAs LED lamp house as its light source and
consisted of an optical unit and a control unit.
The absorbance correction and mixed calibration
set method were proposed to correct the original
spectral data and to eliminate the interference of
soil moisture and particle size, respectively. An
estimation model of soil total N content was
established based on the corrected absorbance
data at six wavelengths (940, 1050, 1100, 1200,
1300, and 1550 nm) using an algorithm of the
back propagation neural network. These methods
could efficiently eliminate the interference of soil
moisture and particle size on predicting soil total
N content. In a similar context, Horta et al. (2015)
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Table 1. Summary of NIR spectroscopy measurement accuracy of soil parameters by laboratory visible and near
infrared (vis–NIR) spectroscopy techniques

References Soil R2 RPD RMSEP Reason for Accuracy
properties better accuracy

Reeves et al (2001); Organic 0.46–0.98 1.30–9.70 0.06–2.90 R2> 0.90, RPD Excellent
Slaughter et al (2001); Carbon (% ) > 3 and RMSEP
Conforti (2015); < 7%
Gomez et al. (2013);
ChacónIznaga et al. (2014)
Udelhoven et al. (2003), Cinorg 0.53–0.96 4.01–4.99 0.17–0.56 R2> 0.90, RPD Excellent
Krishnan et al. (1980), (%) > 3 and RMSEP
Cohen et al. (2005) < 7%
Couteaux et al. (2003), Total 0.04–0.99 0.34–6.80 0.0004– R2> 0.90, RPD Excellent
Dalal et al. (1986), Nitrogen 0.08 (%) > 3 and RMSEP
Guerrero et al. (2010), < 7%
Vagen et al. (2006)
Waiser et al. (2007), Clay 0.15–0.91 1.70–3.10 0.79–6.10 R2> 0.90, RPD Excellent
Ben-Dor and Banin content (%) > 3 and RMSEP
(1995), Awiti et al. < 7%
(2008), Chang et al.
(2001)
Chang et al. (2001), MC 0.84–0.98 2.36–5.26 0.50–4.88 R2> 0.90, RPD Excellent
Chang et al. (2005), (%) < 3 and RMSEP
Dalal and Henry (1986), < 7%
Mouazen et al. (2006b),
Slaughter (2001)
Cohen et al. (2005), pH 0.50-0.97 0.57-2.39 0.04-1.43 R2> 0.90, RPD Between
Mouazen et al. (2006a), (%) < 3 and RMSEP Good and
Shepherd and Walsh < 7% approxi-
(2002), Stenberg [101], mately
Conforti et al. (2015) quantitative

prediction
Cohen et al. (2005), Ca 0.07–0.95 0.60–2.75 0.66–52.90 R2> 0.90, RPD Good
Mouazen et al. (2006a), (cmol kg–1) < 3 and RMSEP
Cozzolinoet al. (2003), is more
Zornoza et al. (2008)
Awiti et al. (2008), CEC 0.13–0.90 0.55–2.51 1.22–10.43 R2 = 0.90, RPD Good
Ben-Dor and Banin (1995), (cmol kg–1) < 3 and RMSEP
Chang et al. (2001), is more
Mouazen et al. (2006a),
Waiser et al. (2007),
Lu et al. (2013),
Conforti et al. (2015)
Cozzolino et al. (2003), Mg 0.53–0.91 0.48–2.54 0.03–38.36 R2≈ 0.90, RPD Good
Groenigen et al. (2003), (cmol kg–1) < 3 and RMSEP
Udelhoven et al. (2003), is more
Wetterlind et al. (2010)

Contd...
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References Soil R2 RPD RMSEP Reason for Accuracy
properties better accuracy

Awiti et al. (2008), Sand 0.59–0.92 0.87–3.40 1.91–11.93 R2 varies rapidly, Approxi-
Ben-Dor and Banin (1995), content (%) RPD is more mately
Chang et al. (2001), than 2 and quantitative
Cozzolinoand Moron RMSEP > 7%
(2003)
Awiti et al. (2008), Silt 0.41–0.84 1.09–3.07 1.79–9.51 R2< 0.90, RPD Approxi-
Ben-Dor and Banin (1995), content (%) is nearly equal mately
Chang et al. (2001), to 3 and RMSEP quantitative
Cozzolino et al. (2003) > 7%
Bogrekci and Lee (2005), Total P 0.01–0.93 0.10–3.80 1.35–24.6 R2 varies rapidly, Approxi-
Mouazen et al. (2010), (100 mg RPD is nearly 3 mately
Wetterlind et al. (101), kg–1) and RMSEP is quantitative
Conforti et al. (2015), more
ChacónIznaga et al. (2014)
Cozzolino and Moron K 0.11–0.85 0.52–5.1 0.05–1.84 R2 is less, RPD Approxi-
(2003), Groenigen et al. (cmol kg–1) > 3 and RMSEP mately
(2003), Mouazen et al. is quite ok quantitative
(2006b), ChacónIznaga
et al. (2014)
Chang et al. (2001), R2 is very less, Distin-
Mouazen et al. (2006a) RPD is less and guishes
Mouazen et al. (2010) RMSEP is more between

high and low

• Values of R2, RMSEP, and RPD are based on the reference papers and those are not listed in this table.
• Classification of accuracy into excellent, good, approximately quantitative, distinguishes between high and

low, not usable results are based on the maximum number of publications confirming an accurate category
for a soil property. R2, coefficient of determination; RMSEP, root mean square error of prediction; RPD,
residual prediction deviation (SD/RMSEP); Excellent (RPD > 3.0 and R2> 0.90); Good (RPD = 2.5–3.0 and
R2 = 0.82–0.90); Approximately quantitative (RPD = 2.0–2.5 and R2 = 0.66–0.81); Distinguishes between
high and low (RPD = 1.5–2.0 and R2 = 0.50–0.65); and Not usable (RPD < 1.5 and R2< 0.5) (Chang et al..,
2001).

• The above data is collected from different research articles mentioned in the reference.

Table 2. Summary of NIR spectroscopy measurement accuracy of soil parameters by in situ visible and near
infrared (vis–NIR) spectroscopy techniques

References Soil R2 RMSEP RPD Accuracy
properties

Fystro (2002), Udelhoven Organic 0.51–0.96 0.29–1.40 1.30–4.95 Between Good and
et al. (2003), Mouazen et al. Carbon (%) approximately
(2010) quantitative prediction
Chang et al. (2005), Fystro Total 0.80–0.93 0.02–0.06 2.1–3.88 Good
(2002), Mouazen et al. (2006a) Nitrogen (%)

content
Chang et al. (2005), Clay 0.76–0.83 5.25–6.1 1.45–2.36 Approximately
Waiser et al. (2007), content (%) quantitative
Bricklemyer and Brown (2010)

Contd...
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References Soil R2 RMSEP RPD Accuracy
properties

Ben-Dor et al. (2008), MC 0.40–0.98 1.0–6.4 (%) 1.98–5.74 Excellent
Ben-Dor and Banin (1995),
Slaughter et al. (2001)
Chang et al. (2005), pH 0.66–0.74 0.39–0.72 1.55–2.14 Approximately
Mouazen et al. (2006a), quantitative
Mouazen et al. (2006b),
Mouazen et al. (2007),
Mouazen et al. (2010)
Chang et al. (2005), Ca 0.77–0.86 1.63–1.68 2.10–2.19 Approximately
Udelhoven et al. (2003), (cmol kg–1) quantitative
Mouazen et al. (2006a),
Mouazen et al. (2007),
Mouazen et al. (2006a)
Chang et al. (2005), CEC 0.78–0.89 1.77–3.57 2.31–2.33 Approximately
Mouazen et al. (2006a), (cmol kg–1) quantitative
Mouazen et al. (2006b),
Mouazen et al. (2007)
Chang et al. (2005), Mg 0.49–0.84 0.30–0.30 1.39–1.56 Distinguish between
Udelhoven et al. (2003), (cmol kg–1) high and low
Mouazen et al. (2006a),
Mouazen et al. (2006b),
Mouazen et al. (2007)
Chang et al. (2005) Sand 0.49 12.44 (%) 0.87 Not usable results

content
Chang et al. (2005) Silt 0.13 6.04 (%) 0.80 Approximately

content quantitative
Bogrekci and Lee (2005), Total P 0.09–0.80 2.3–25 1.45–2.24 Approximately
Maleki et al. (2006), (mg 100 g–1) quantitative
Mouazen et al. (2007)
Udelhoven et al. (2003), K 0.33–0.87 0.21–3.90 1.21–2.80 Distinguishes between
Zornoza et al. (2008), (cmolc/kg–1) high and low
Al-Asadi et al. (2014),
Wetterlind et al. (2010)
Mouazen et al. (2006a), Na 0.13–0.77 0.025–0.129 1.29–1.98 Not usable
Mouazen et al. (2006b), (cmolc/kg–1)
Mouazen et al. (2007),
Mouazen et al. (2010),
Zornoza et al. (2008)

• Values of R2, RMSEP, and RPD are based on the reference papers and those are not listed in this table.
• Classification of accuracy into excellent, good, approximately quantitative, distinguishes between high and

low, not usable results are based on the maximum number of publications confirming an accurate category for
a soil property. R2, coefficient of determination; RMSEP, root mean square error of prediction; RPD, residual
prediction deviation (SD/RMSEP); Excellent, Good, Approximately quantitative, Distinguishes between high
and low, and Not usable categories are as given in Table 1 (Chang et al.., 2001).

• The above data is collected from different research articles mentioned in the reference.
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Table 3. Summary of MIR spectroscopy measurement accuracy of soil parameter analysis

Soil properties R2 RMSEP References Accuracy

Organic Carbon 0.92–0.99 0.32–2.42 McCarty et al. (2002), Madari et al. (2006), Excellent
(%) Bornemann et al. (2008), Reeves (2010)

Total Nitrogen 0.86–0.99 0.023 (%) Janik et al. (1998), Du and Zhou (2009), Excellent
Minasny et al. (2009), Reeves et al. (2001)

Clay content 0.67–0.99 1.54–8 (%) Minasny et al. (2009), Madari et al. (2006), Excellent
Taylor et al. (2006)

pH 0.56–0.90 0.16–0.45 Janik et al. (1998), Reeves et al. (2001), Good
Minasny et al. (2009), Taylor et al. (2006)

Ca 0.38–0.96 18.7 Janik et al. (1998), Minasny et al. (2009), Excellent
(cmol/kg) Taylor et al. (2006)

CEC 0.34–0.92 4.6 Janik et al. (1998), Minasny et al. (2009), Good
(cmol/kg) Taylor et al. (2006)

Mg 0.76–0.94 18 (cmol/kg) Janik et al. (1998), Minasny et al. (2009) Excellent
Sand content 0.74–0.97 2.47–7.7 (%) Janik et al. (1998),Madari et al. (2006), Excellent

Taylor et al. (2006)
Silt content 0.49–0.84 2.17–8.7 (%) Janik et al. (1998), Madari et al. (2006) Good
Total P 0.07–0.94 6.2–29.3 Janik et al. (1998), Du and Zhou (2009), Approximately

(mg 100 g-1) Reeves et al. (2001), Taylor et al. (2006) quantitative
K 0.33–0.88 1.92–38.09 Janik et al. (1998) Not usable

(mg/kg)
Na 0.31–0.72 0.6–1.1 Janik et al. (1998) Not usable

(mg/kg)

Table 4. Summary of measurement accuracy of soil properties by on-line visible and near infrared (vis–NIR)
spectroscopy

Spectrum Spectral Results References Accuracy
type range (nm)

Single 660 SOM (R2=0.70) Shonk et al. (1991) Average
wavelength

vis–NIR 300–1700 MC, pH, SOM, and NO3–N Shonk et al. (1991), Average
spectrum (R2=0.68, 0.61, 0.64, and 0.19, Hummel et al. (2001)

respectively)

NIR spectrum 1603–2598 SOM and MC (R2=0.79, 0.89, Hummel et al. (2001) Good
RPD= 2.17 and 2.86,
respectively)

NIR spectrum 900–1700 MC, TC, TN, pH (R2=0.82, Christy (2008) Excellent
0.87, 0.86, and 0.72,
respectively)

vis–NIR 300–1700 Similarity of OC, TC, MC, pH, Mouazen et al. (2007) Excellent
spectrum Pavl, and Pext maps

vis–NIR 350–2224 OC (SEP=0.34) and clay Bricklemyer and Brown
spectrum content (RPD=1.4, SEP=6.94%) (2010) Average
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have reviewed potentially cost-effective methods
for measurement, sampling design, and
assessment. Current tiered investigation
approaches and sampling strategies can be
improved by using new technologies such as
proximal sensing. Design of sampling can be
aided by on-the-go proximal soil sensing; and
expedited by subsequent adaptive spatially
optimal sampling and prediction procedures
enabled by field spectroscopic methods and
advanced geostatistics. Table 3 summarizes the
need of soil parameter measurement with MIR
spectroscopy. The table proves that OC (Organic

Components) could possibly be measured and
analyzed efficiently with MIR, with R2 around
0.99. Less accurate results can be executed for
total or organic N content. MIR enables the
determination of soil texture, CEC, microelements
that have a first-rate to excellent accuracy with a
high quality accuracy of soil pH. Additionally,
no list of using MIR for online measurement of
soil properties continues to be published to date.
A comparative study between NIR spectroscopy
(laboratory, in-situ, online) based soil parameter
analysis and MIR spectroscopy based soil
parameter analysis is given in Table 5.

Table 5. Comparative study between laboratory vis-NIR spectroscopy, in situ vis-NIR spectroscopy and MIR
spectroscopy based soil parameter measurement

Soil In situ measurement Laboratory On-line measurement Mid-Infrared
properties accuracy (vis-NIR measurement accuracy (MIR)

based) accuracy (vis-NIR based) spectroscopy
(vis-NIR based) accuracy

Organic C Between Good and Excellent Between Good and Excellent
approximately approximately
quantitative quantitative

Total Nitrogen Good Excellent Good Excellent
Clay content Approximately quantitative Excellent Between Good and Excellent

approximately
quantitative prediction

MC Excellent Excellent Between Good and -
approximately quantitative

pH Approximately quantitative Between Good Between Good and Good
and approximately approximately quantitative
quantitative

Ca Approximately quantitative Good Between Good and Excellent
approximately quantitative

CEC Approximately quantitative Good Good Good
Mg Distinguish between high Good Good Excellent

and low
Sand content Not usable results Approximately Approximately Excellent

quantitative quantitative
Silt content Approximately quantitative Approximately Approximately quantitative Good

quantitative
Total P Approximately quantitative Approximately Approximately Approximately

quantitative quantitative quantitative
K Distinguish between high Distinguish Distinguish between Not usable

and low between high high and low
and low

Na Not usable Not usable Not usable Not usable
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Sensors using electrical conductivity,
resistivity and permittivity

There are numerous principles on this
category of sensors to acquire soil parameters
directly or indirectly by utilizing electrical
conductivity, resistivity and permittivity
principles. The sensors participate in these kinds
are derived from below mentioned measurement
procedures:

1. Electrical Conductivity (EC) based soil sensor

2. Time Domain Reflectance (TDR) based soil
sensor

3. Frequency Domain Reflectance (FDR) based
soil sensor

4. Ground Penetrating Radar (GPR) based soil
sensor

5. Electromagnetic Induction (EMI) based soil
sensor

6. Coaxial Impedance Dielectric Reflectometry
Sensors

Electrical Conductivity (EC) based soil
sensor

Electrical conductivity (EC) of soil is a way
of measuring the level of salt content in the soil
(salinity level of the soil). This is also an
important parameter for measuring soil health.
This has effects on crop yields, crop suitability,
plant nutrient availability as well as activity of
soil microorganisms. These have effects on key
soil processes, which include emission of
greenhouse gases such as nitrogen oxides,
methane, and carbon dioxide. More amount of
salt content may slow the plant growth process
by influencing the soil-water balance. EC sensing
can also be done using contact-based methods,
which is based on the flow of current towards the
soil with the contact electrodes and also the
difference in voltage used to calibrate the
conductivity value. Even though EC does not
offer a direct measurement of salt compounds, it
can also be correlated with the concentrations of
nitrates, potassium, sodium, chloride, sulfate, and
ammonia. For several non-saline soils,
determination of EC can be a convenient as well

as an affordable way to estimate the amount of N
content available for better plant growth. That is
certainly a negative aspect of accomplishing this,
which might cause error during the measurement.
Amakor et al. (2014) compared four saturated
paste-related methods of estimating salinity with
respect to specific soil management goals.
Comparison of the methods across six soil depths
and three textural groups demonstrates that
estimates of salinity are significantly influenced
by the method, depth of sampling, and soil
texture. Whereas electrical conductivity in
saturated paste extracts (ECe) and direct
measurement of EC in soil pastes (ECcup)
estimates differed significantly from each other
and from those of the other methods, EC based
on electromagnetic induction (ECH25ECe) and
EC in diluted saturated paste extracts (ECed)
estimates were similar. In addition, high
correlations between estimates of salinity by
ECH25ECe and ECe indicate their similarity and
suggest the suitability of the ECH25ECe method
as a reference parameter for monitoring salinity.
Márquez Molina et al. (2014) have identified the
spatial distribution of bulk electrical conductivity
(ECb) of non-saturated variability association
with variability of nitrates and bio available
phosphorous, water content, topography and
electrical conductivity (EC) of saturated paste
extract. The analysis of the impact was done at
two pens with different time of confinement of
the animals (Pen1 and Pen 2, with 16 months and
7 years of animal occupation, respectively). Some
of the key references of measurement methods
are indexed in Table 6. An ER type soil probe for
direct data acquisition using any DAQ instrument
is displayed in Fig. 2.

Time Domain Reflectance (TDR) based soil
sensor

The TDR probe is generally employed to
characterize and locate faults in metallic cables.
This principle may also be used for soil MC
measurement with good accuracy. A TDR
transmits short rise time pulse throughout the
conductor. The resulting reflected pulse that’s
measured within the output/input towards TDR is
plotted just like a function of energy. Because the
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Table 6. List of some of the ER or EC probes

References Sensor model Specifications Dimensions Availability

Caproco Inc.1 Electrical Resistance Element Type Normal Length: 12.0 cm Commercially
Soil Probe Sensitivity, High Sensitivity Weight: 10 g available

Interfaces with the Caproco
ER Analyzer

Campbell Sci Inc.1 229-L Water Matric Measurement Range: Diameter: 1.5 cm Commercially
Potential Sensor -10 kPa to -2500 kPa (0.6 in.) Length: available
253-L Soil Matric Resolution: ~1 kPa at matric 6.0 cm (2.4 in.)
Potential Block potentials < -100 kPa Weight: 10 g

(0.35 oz)
Cable Weight:
~23 g m-1)

Vegetronix Inc.3 VH400 Soil Moisture Power consumption: Width: 7.09mm Commercially
Sensor Probes < 7mA, Supply Voltage: Length: 93.76mm available

3.3V to 20 VDC, Power on
to Output stable:400 ms,
Output Impedance: 10K
ohms, Operational
Temperature: -40ºC to 85ºC,
Accuracy at 25°C: 2%
Output: 0 to 3V related to
moisture content,
Shell Color: Red

Murata et al. (2014) Toyohashi University Temperature range: 15 °C 5.6 cm in length Developed by
of Technology, to 33 °C Error: +5% to 0.8 cm wide Toyohashi
Toyohashi, Aichi –10% Calibration: 1.3 cm height University
441-8580, Japan R2=0.9965 AC operating

frequency: 10KHz
1Caproco specializes in the custom design, fabrication and servicing of Internal Corrosion Monitoring and
Control Systems. http://www.caproco.com/indexnoflash.htm
2Measurement & Control Products for Long-term Monitoring.https://www.campbellsci.com
3Vegetronix specializes in innovative agricultural electronic systems, which include low cost soil moisture
sensor probes, data acquisition systems, irrigation controllers, grow lights and controller, and water saving flow
control devices, and SDI-12 protocol translators. http://www.vegetronix.com

Fig. 2. Soil Electrical Resistivity (ER) or Electrical
Conductivity (EC) probe near a plant for
installation

speed of signal propagation is actually
comparatively constant for the transmission
medium and time is frequently read as a function
of the cable’s length. If two metal rods are set up
soil, the reflected pulse is generally a function in
the soil dielectric constant which is a function of
the soil moisture content. Increased water content
slows down the pulse reflectance time. The TDR
is actually insensitive to salinity provided that
the salinity level is low enough, even when a
good waveform is returned. As the salinity levels
increase, the signal reflection from TDR ends of
the rods inside TDR probe is lost (amplitude is
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less). Such things happen because of conduction
around the signal when using the saline soil
pertaining to the rods. The amount of conduction
increases because the soil wets.

Arsoy et al. (2013) has focused on
development of a methodology using Artificial
Neural Network (ANN) for enhanced
determination of soil water content based on
dielectric permittivity measurement via TDR.
Within this study, the dielectric permittivity
obtained with the TDR measurement, the bulk
dry density, the specific gravity and the fines
content were selected as the input parameters for
an ANN model. The performance of the ANN
model has been compared with some of the
existing calibration models. The average RMSE
of the ANN-based approach was 0.009 and 0.007
cm3 cm-3 with 8 and 11 nodes, respectively, while
the same value was in a range of 0.019 to 0.033
cm3 cm-3 for the existing calibration models and
0.015 to 0.018 cm3 cm-3 for the best-fitted
calibration models when all soil classes
considered together. Figure 3 shows a TDR probe
is installed in a land and connection cable is used
for data acquisition. Some of the key references
of measurement methods are indexed in Table 7.

Frequency Domain Reflectance (FDR) based
soil sensor

There are many soil probes available today
who uses the Frequency Domain Reflectometry

Fig. 3. Time Domain Reflectance (TDR) probe for
soil MC measurement

(FDR) methodology. This kind of measurement
uses an oscillator to propagate an electromagnetic
signal via a metal electrode or any other wave
guide. Here the difference between output wave
and the return wave frequency is measured to
analyze soil moisture. The FDR probes are
accurate but must be calibrated properly to
calculate soil moisture content. It also provides a
quicker response time as compared to TDR probes
and can be linked into a standard data logger to
gather readings. The soil moisture content
incorporates a linear relationship with the logged
fringe-capacitance. Al-Asadi and Mouazen (2014)
have collected 1013 soil samples from England
and Wales, from 32 arable and grassland fields
with different soil types were measured with a
vis-NIR spectrophotometer (LabSpec®Pro Near
Infrared Analyzer, Analytical Spectral Devices,
Inc., USA) after in situ measurement with a
ThetaProbe FDR (Delta-T Device Ltd.). Two
calibration methods of the vis-NIRS were tested,
namely, partial least squares regression (PLSR)
and artificial neural network (ANN). The
ThetaProbe calibration was performed with
traditional methods and ANN. ANN analyses
were based on a single-variable input or multiple-
variable input (data fusion). During ANN – data
fusion analysis, vis-NIRS spectra and ThetaProbe
output voltage (V) were fused in one matrix with
or without laboratory measured texture fractions
and organic matter content (OM). A detailed
comparison between TDR and FDR probe is
described in table 8. A general construction of
FDR is shown in Fig. 4.

Ground Penetrating Radar (GPR) based soil
sensor

The GPR is a geophysical technique which
utilizes electromagnetic energy with central
frequencies generally between 50 and 1200 MHz
to generate the subsurface soil parameter map.
The GPR ground wave data can be used for
accurate estimation of soil water content of the
shallow soil at a finer resolution. The transmitted
electromagnetic ground wave energy passes
directly with the soil by the receiving antenna,
which has a velocity dependant on the dielectric
permittivity in the soil. Electromagnetic energy
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Table 7. Some of the available TDR probe based soil sensors

References Sensor model Specifications Dimensions

IMKO HD2 meter and Power supply: 7V..24V-DC Power Size: 155 x Ø63mm
Micromodultechnik PICO64 probe consumption: 100mA @ 12V/DC during Rod length:
GmbH 1 2..3sec. of measuring Moisture measuring standard: 160mm

range: 0..100% volumetric water content Rod diameter: 6mm
Spectrum FieldScout TDR Measurement Units: Percent volumetric Two 1.5 inch (3.8
Technologies Inc.2 300 Soil Moisture water content Resolution: 0.1% volumetric cm) Rods Two 3

Meter water content Accuracy: ±3.0% volumetric inch (7.5 cm) Rods
water content with electrical conductivity
< 2 mS/cm Range: 0% to saturation
(Saturation typically around 50% volumetric
water) Battery/Life: 4 AAA alkaline batteries;
approximately 12-month battery life Data
Logger: 3,250 measurements without GPS;
1,350 with GPS/DGPS

Campbell Sci Inc.3 TDR100 Pulse generator output: 250 mV into 50Ω 23.6 x 5.9 x 12.6 cm
Output impedance: 50 Ù ±1% Time response (9.3 x 2.3 x 5.0 in)
of combined pulse generator and sampling
circuit: d” 300 ps Pulse length: 14 ìs Timing
resolution: 12.2 ps Waveform sampling: 20
to 2048 waveform values over chosen length

1 IMKO Micromodultechnik GmbH offers high-tech moisture measurement products as reliable, high-quality,
state-of-the-art alternatives by offering high-precision readings, high reliability, ease of use and rapid results
online and offline. http://imko.de/en/products
2 Spectrum Technologies manufactures and distributes affordable, leading-edge measurement information
technology to the agricultural market throughout the world. Founded in 1987 by Mike Thurow, Spectrum
Technologies is headquartered in Aurora, IL. http://www.specmeters.com/
3Measurement & Control Products for Long-term Monitoring.https://www.campbellsci.com

propagates from a transmitting antenna, and is
also modified by subsurface contrasts in dielectric
permittivity (k) and magnetic permeability (m).
As most of the soil has negligible variation in
magnetic permeability, k provides the most
important aspect of the recorded GPR response.
A number of the electromagnetic energy passes
from a transmitting to receiving antenna with the

air, and is known as the airwaves. Area of the
transmitted energy, referred to as ground wave,
propagates through the soil across the ground-air
interaction towards receiving antenna, and section
of the transmitted energy is reflected from the
subsurface in contrasts to dielectric permittivity.

Tosti et al. (2013) has studied different
ground-penetrating radar (GPR) methods and
techniques used to investigate the clay content in
sub-asphalt compacted soils. Experimental layout
provided the use of typical road materials,
employed for road bearing course construction.
Three types of soils classified by the American
Association of State Highway and Transportation
Officials (AASHTO) as A1, A2, and A3 were
used and adequately compacted in electrically and
hydraulically isolated test boxes. Percentages of
bentonite clay were gradually added, ranging from

Fig. 4. Frequency domain reflectance (FDR) probe
for soil MC measurement
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magnetic flux induces small currents from the
soil, which generate a secondary magnetic flux.
A receiver coil responds to the primary and
secondary magnetic fields. By operating at ‘low
induction numbers’, the ratio between the primary
and secondary fields become a linear function of
conductivity. At field and landscape scales, ECa
maps have the potential to provide higher degrees
of resolution and better distinction of soil types
than soil maps prepared with traditional tools.
Saey et al. (2015) have evaluated different
inversion procedures of EMI data and studied
their effectiveness to characterize the depth of
the interface between two contrasting soil layers,
as well as their respective conductivities. A 1D-
laterally constrained inversion procedure was
compared with a non-constrained, robust 1D-
inversion procedure. Both procedures make use
of a low induction number (LIN) -approximated
depth response curves and provided similar
results, although the calibration with soil data was
essential to attribute absolute values of the
inverted data. In the similar context, Lardo et al.
(2012) have observed the relations of the apparent
electrical conductivity (ECa) of soil and also
measured using a Profiler GSSI EMP-400 with
soil abiotic and biotic parameters as volumetric
water content, pH, electrical conductivity, coarse
elements, density, biomass of different earthworm
ecological categories (anecics and endogeics).
Trials were carried out in nine commercial
vineyards in Languedoc-Roussillon (France)
cultivated according to different soil management

Table 8. A Comparative study between TDR and FDR probe for soil moisture content (MC) measurement

Sensor Testing R2 Required Size for References
Type Methodology good accuracy

TDR Laboratory 0.80-0.99 0.20-0.70m (More Wagner et al. (2011), Dalton et al. (1984),
than 0.7m provides Heimovaara (1993), Stangl et al. (2009),
better accuracy) Young et al. (1997)

In-situ 0.84-0.99 Calamita et al. (2012), Topp et al. (1985),
Dasberg and Dalton (1985), Wu et al. (1997)

On-line 0.90-0.9 Thomsen et al. (2007), Evett (2003)
FDR Laboratory 0.90-0.99 Diameter 2 mm, Jagdhuber et al. (2015)

In-situ 0.90-0.98 separation distance Hamed et al. (2006)
On-line 0.90-0.98 13 mm, lengths 1 or Sun et al. (2006), Whalley et al. (1992)

2 or 3 cm.

2% to 25% by weight. Analyses were carried out
for each clay content using two different GPR
instruments. Benedetto (2010) proposed a new
technique that avoids several disadvantages of
existing techniques. In this study, ground-coupled
Ground Penetrating Radar (GPR) techniques are
used for non-destructively monitor the volumetric
water content. The signal is processed in the
frequency domain; this method is based on
Rayleigh scattering according to the Fresnel
theory. The scattering produces a non-linear
frequency modulation of the electromagnetic
signal, where the modulation is a function of the
water content. To test the proposed method, five
different types of soil were wetted in a laboratory
under controlled conditions and the samples were
analyzed using GPR. The GPR data were
processed in the frequency domain, demonstrating
a correlation between the shift of the frequency
spectrum of the radar signal and the moisture
content.

Electromagnetic Induction (EMI) based soil
sensor

Electromagnetic induction (EMI) based
conductivity measurement technique is a non-
invasive and non-destructive sampling method.
No probes are required to use EMI, and
measurements can be done quickly and
inexpensively. In the EMI sensing approach, a
transmitter coil at or above the soil surface is
energized through an alternating current, setting
up a primary, time-varying flux in soil. This
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technologies: grass cover, chemical weeding and
tillage. Earthworms were measured. Strong
relationships between the abundance and biomass
of anecic and endogeic earthworms and ECa
values were found, particularly in grass covered
and chemically weeded plots. This result is
supported by the high determination coefficients
found (R2 from 0.53 to 0.94).

Coaxial Impedance Dielectric Reflectometry
(CIDR) Sensors

Soil probes which use the Coaxial Impedance
Dielectric Reflectometry technique of soil
moisture measurement employ an oscillator to
build an electromagnetic signal that is propagated
throughout the unit (usually by metal tines/other
waveguide) and in the soil. Part of this signal is
reflected back by the soil, and the sensor will
measure the amplitude of the reflected signal plus
the incident signal in volts. Precisely these raw
voltages are used in the mathematical numerical
solution to Maxwell‘s equations to first calculate
the impedance, then both real and the imaginary
dielectric permittivity which is used to accurately
estimate soil water content. The Stevens Hydra
Probe is the only commercially available sensor
to use the Coaxial Impedance Dielectric
Reflectometry method along with complex
computations in soil measurement, resulting in
the Hydra Probe’s high measurement accuracy.
The soil measurement computations are
performed by a microcontroller inside the Hydra
Probe, making it easy to use as the probe can
output results in standard engineering units.

Soil parameter sensing using the passive
radiometry principle

Passive radiometry sensing, is simply
regarding the radio-physical techniques ideal for
remote observations inside environment. It is
usually determined by measurements using the
natural radio waves of objects. Mladenova et al.
(2013) have attempted to provide a more thorough
understanding of the fundamental differences
between the algorithms and how these differences
affect their performance in terms of a range of
soil moisture provided. The comparative overview

presented in the paper is based on the operating
versions of the source codes of the individual
algorithms. Analysis has indicated that the
differences between algorithms lie in the specific
parameterizations and assumptions of each
algorithm. The comparative overview of the
theoretical basis of the approaches is linked to
differences found in the soil moisture retrievals,
leading to suggestions for improvements and
increased reliability in these algorithms. Gamma-
ray spectrometry or radiometry has evolved over
several decades and widely used in many
agricultural applications line exploration of soil
minerals as well as environmental and geological
mapping. Escorihuela et al. (2010) has analyzed
brightness temperature, soil moisture and
temperature measurements acquired over a bare
soil during the SMOSREX experiment. A more
detailed profile of surface soil moisture was
obtained with a soil heat and water flows
mechanistic model. It was found that (1) the soil
moisture sampling depth depends on soil moisture
conditions, (2) the effective soil moisture
sampling depth is shallower than provided by
widely used field moisture sensors, and (3) the
soil moisture sampling depth has an impact on
the calibration of soil roughness model
parameters. In the similar context, Rautiainen et
al. (2014) has presented a novel algorithm for
detecting seasonal soil freezing processes using
L-band microwave radiometry. L-band is the
optimal choice of frequency for the monitoring
of soil freezing, due to the inherent high contrast
of the microwave signature between the frozen
and thawed states of the soil medium. Dual-
polarized observations of L-band brightness
temperature at a range of observation angles were
collected from tower-based instruments, and
evaluated against ancillary information on soil
and snow properties over four winter seasons.

Strength based soil parameter sensing

Soil strength always changes with time under
the influence of climate changes, soil management
and plant growth. Hence the unit of strength is
the same as stress (Pa in SI unit system). It is a
measure of the soil resistance to deformation by
continuous displacement of its individual soil
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particles. The shear strength parameters of a soil
are determined in the lab primarily with two types
of tests like DST and TST.

i. Direct Shear Test (DST)

• It is quick and Inexpensive.

• The disadvantage is that it neglects the soil
on a specified plane, which is probably not
the weakest one.

ii. Triaxial Shear Test (TST)

• Specimens are exposed to (approximately)
uniform stresses and strains.

• The overall stress-strain-strength behavior can
be examined.

• Various combinations of cell pressure and
axial stress can also be employed.

Amšiejus et al. (2014) have performed
experimental tests by the common type of direct
shear apparatus which shows that normal stress
on the shear plane of soil sample is not equal to
the vertical component of distributed external load
applied to the top of soil sample. Performed
measurements cleared that only 65–85% of total
vertical load is transmitted to the sample shear
plane. Thus, determining of the soil shear strength
depends on shear apparatus construction, i.e. on
the actual magnitude of vertical load transmitted
to the shear plane. The paper presents an analysis
of shear strength parameters of sand determined
by two different constructions of direct shear
apparatuses with the movable lower shear ring.
Cetin and Gökoðlu et al. (2013) have discovered
that in the consolidated undrained tests, failure
occurs at higher levels of strain than previously
believed, while in the consolidated drained tests,
failure occurs at much lower levels of strain than
previously believed.

Soil parameter sensing using electrochemical
principle

Routine laboratory analysis of assorted
nutrients is time consuming, and it cannot be
performed directly in the field. Several
electrochemical sensors were developed that can

offer quick information regarding nutrient status
and pH valuation in the soil. An electrochemical
sensor consists of an ion selective membrane,
which will selectively respond to the target ion,
plus a transducer, that transforms the reactions
into detectable electrical signals. Ion Selective
Electrode (ISE) and Ion Selective Field Effect
Transistor (ISFET) are two types of normally used
potentiometric electrochemical sensors for soil
nutrient analysis. Birrell and Hummel (2001) have
developed an integrated multi-sensor soil analysis
system. Ion-selective field effect transistor
(ISFET) technology was coupled with flow
injection analysis (FIA) to produce a real-time
soil analysis system. Testing of the ISFET/ FIA
system for soil analysis was carried out in two
stages: (1) using manually extracted samples, and
(2) the soil to be analyzed was placed in the
automated soil extraction system, and the
extracted solution fed directly into the FIA
system. The sensor was successful in measuring
soil nitrates in soil solutions (r2>0.9). The rapid
response of the system allowed a sample to be
analyzed in 1.25 s only, which is satisfactory for
real-time soil sensing. Lehmann and Grisel (2014)
has presented a multisensor probe containing four
ISFET (Ion Sensitive Field Effect Transistor)
sensing elements aiming at real time monitoring
of nutrients in soil. A miniature solid-state
reference electrode is integrated with the probe,
which renders the probe resistant against
prolonged periods of drying. The sensing
elements inside the probe are selective towards
K+, NO3

-, H2PO4
- as well as pH.

Soil parameter sensing using Lab-on-a-chip
methodology

Some emerging advanced techniques,
including Micro-Electro-Mechanical System
(MEMS), Micro-fluidics and Lab on the valve
(LOV) are already attempting for electrochemical
detection in biological, chemical and medical
fields and still provide new ideas and good
opportunities for electrochemical sensors from
fabrication to measurement. Up to now, most soil
nutrient detection methods are only able to
measure one target ion by using conventional
electrochemical measurement caused by an ion
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selective membrane, in principle, only selectively
answering and adjusting one target ion.
Electrochemical sensors may be integrated onto
one chip as a sensor array which is a feasible
approach of multi-targets simultaneous detection.
However, all the membranes developed for soil
NPK detection would not reply to only one
specific ion, but additionally along with other
interfering ions present in the analyst. One main
challenge faced could be the reliability of the
sensor array. This can be achieved by avoiding
the interferences from other ions while using the
sensor array for simultaneous detection.

Jackson et al. (2008) has studied the
feasibility of using inexpensive wireless
nanotechnology based devices for the field
measurement of soil temperature and moisture.
The developed MEMS based temperature and
moisture sensors are composed of micromachined
MEMS cantilever beams equipped with a water
sensitive nano-polymer and an on-chip
piezoresistive temperature sensor. The sensor is
based on a shear stress principle, which the
microsensor chip combines a proprietary polymer
sensing element and Wheatstone Bridge
piezoresistor circuit to deliver two DC output
voltages that are linearly proportional to moisture
and temperature. In the similar context, Smolka
(2014) has developed a soil nutrient sensor system
for the combined measurement of NO3, NH4, K
and PO4 in the field. For the measurement, a soil
sample is suspended in a universal extraction
liquid. After filtration, the amount of dissolved
nutrients is measured in this liquid. In this way,
only a single extraction procedure followed by a
single measurement is required, minimizing the
work for the generation of nutrient concentration
maps and depth profiles. The sensor data is
processed in a software system together with crop
growth models and weather data to calculate the
required amount of fertilizers. A mixing and
dosing unit at the field coupled to any standard
irrigation system will allow for automated
fertilization. Zhang et al. (2014) has developed a
real-time monitoring of water and fertilizer
concentration using spectroscopy and optical fiber
technology. On the specific, a calorimetric can be
set in the smart pipeline of all-in-one water

injection fertilize, then process analysis was
carried out on the composition of NPK by UV-
VIS spectroscopy, can get the actual concentration
of the solution under test.

Ramanujan (2013) has developed a
microfluidic water sensor within a fingertip-sized
silicon chip that is a hundred times more sensitive
than current devices. In soil or when inserted into
a plant stem, the chip is fitted with wires that can
be hooked up to a card for wireless data
transmission or is compatible with existing data-
loggers. Chips may be left in place for years,
though they may break in freezing temperatures.
Such inexpensive and accurate sensors can be
strategically spaced in plants and soil for accurate
measurements in agricultural fields.

Comparative study on different soil
parameter sensing devices

There are several types of soil nutrient
sensing devices available. Some of them are under
research-development stage and others are
commercially available. A comparative analysis
of different types of soil sensors based on soil
parameters and suitability for specific analysis
applications are resented in Table 9.

Conclusions

The application of different soil sensors for
precision agriculture is discussed effectively.
Much detailed comparative analysis of kinds of
many sensors are essential for the soil parameter
measurement systems. It is observed that very few
works have been done on compact lab-on-a-chip
type soil parameter sensing methodology. Soil
moisture measurement using lab-on-a-chip is only
reported till date with highest accuracy. Other soil
parameters can also be measured using similar
lab-on-a-chip method with better accuracy which
needs more research for the implementation of
precision agriculture. The vis-NIR spectroscopy
based soil parameter sensing can be used to
analyze nearly all necessary soil parameters,
although the accuracy of measurement may differ
according to sensor arrangements. The efficient
and effective implementation of different sensor
system technologies on soil parameter sensing
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methodology will generate an enormous effect on
land productivity, farmer‘s income and to develop
a competent agricultural management system.
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