Water Requirement of Crops Under Different Sequences and Irrigation Regimes on Sandy Loam Soil in South-West Punjab

C.J.SINGH, M.S.AUJLA, G.S.BUTTAR, K.S.SAINI AND M.S.BHULLAR PAU, Regional Research Station, Bathinda- 151001

ABSTRACT

A field study was conducted for three years (1994-95 to 1996-97) on a sandy loam (fine loamy, mixed hyperthermic, ustochreptic camborthid) soil at the farm of the Regional Research Station, Bathinda to find out the crop sequences suiting the irrigation water available in the region. The mean annual water requirement for post sowing irrigation under cotton-wheat, cotton-barley, cotton-sunflower and cotton-gram were 42.5, 42.5, 70.0 and 32.5 cm under optimal regime, and 5.0, 5.0, 27.5, 0.0 cm under sub-sub- optimal regime, respectively. Besides high water requirement, the cotton-sunflower sequence gave low economic returns. Wheat in this cotton belt could be replaced by barley under sub-optimal and by gram under sub-sub- optimal irrigation regime.

Introduction

The canal water supply in south-western Punjab is considered inadequate for the prevalent cotton-wheat sequence as the underground water is saline and need to be used with caution. Bharambe et al (1990) reported that at Parbhani economically optimum irrigation needed to be scheduled at 0.75 IW/ CPE to crops with high water requirement(wheat and pea)and at 0.40 IW/CPE to those with low water requirement (chickpea and sunflower). The sequence of sorghumsunflower and sorghum-chickpea were more remunerative with high water use efficiencies than the other cropping systems such as sorghum-pea, pigeonpea-wheat, rice-wheat and sorghum-wheat. Singh et al (1996) observed that cotton-mustard could be the alternative to the cotton-wheat on loamy sand soil in south-western Punjab. Sharma and Rajput (1990) found that rice-mustard -sarson, rice-mustard-green gram and rice -potatogreengram were more efficient cropping systems in West Bengal. Singh (1996) reported that pearlmillet-toria-sunflower gave good economic returns in Indira Gandhi canal area of Rajasthan. Therefore, an experiment was conducted to evaluate the yields and economic returns of different cropping sequences under different irrigation supplies on sandy loam soil in the cotton belt of Punjab.

Materials and Methods

Field experiments were conducted during 1994-95 to 1996-97 on a sandy loam (fine loamy mixed hyperthermic ustocherptic camborthid) soil at the farm of Regional Research Station, Bathinda to find out the crop sequence with water requirement matching the irrigation water available in the region. The crop sequences tested were: cotton-wheat, cotton-barley, cotton -sunflower and cotton-gram. Predetermined irrigation schedules were imposed. The experiment was laid out in split plot design with crop sequences as main and irrigation regimes as sub treatments. The crops were raised as per general recommendation for the region. The treatments were replicated four times in 8 X 5 m plots. The sowing, harvesting times and the crop varieties are given in table 1. The number of irrigations assigned to different crops under various irrigation levels are given in table 2. Soil moisture was monitored gravimetrically at sowing and at harvest. The economic returns were computed using standard production/ produce costs (Department of Economics and Sociology, PAU, Ludhiana) and subjected to factorial analysis.

Results and Discussion

Crop yields

Cotton: The mean kapas yields under all irrigation regimes during the three years in cotton-barley, cotton-sunflower and cotton-gram were at par, but cotton-sunflower sequence produced 600-800 kg/ha lesser kapas under different irrigation regimes than under preceding sequences (table 3). During 1996-97, sub sub optimal irrigation significantly reduced the kapas yield to 1591 kg/ha as compared to 1856 kg/ha under optimal and 1777 kg/ha under sub-optimal irrigation regime in cotton-wheat sequence.

Wheat and barley: During 1994-95, the sub-sub optimal irrigation significantly reduced wheat and barley grain yields to 2850 kg/ha and 2562 kg/ha over optimal (3495 kg/hä and 3415 kg/ha) and sub optimal (3675 and 3175 kg/ha) irrigation regimes which were at par in both the crops.

Table 1. Varieties of crops sown and sowing/harvesting times during the study

		Sowing			Harvesting		
Crop sequence	Variety	1994-95	1995-96	1996-97	1994-95	1995-96	1996-97
Cotton-Wheat	Cotton F846	05-06-94	20-05-95	20-05-96	25-11-94	29-11-95	15-11-96
	Wheat PBW 138	30-11-94	02-12-95	22-11-96	04-05-95	04-05-95	25-04-96
Cotton-Barley	Cotton F846	04-06-94	29-05-95	20-05-96	25-11-94	29-11 - 95	15-11-96
	Barley PL 172	02-12-94	92-12-95	22-11-96	04-05-95	25-04-96	23-04-97
Cotton-sunflower	Cotton F846	05-06-94	20-05-95	20-05-96	25-11-94	29-11-95	15-11-96
	Sunflower MSBH8	17-01-95	22-01-95	05-02-95	06-06-95	20-05-96	93-06-97
Cotton-Gram	Cotton F846	05-06-94	20-05-95	20-05-96	25-11-94	29-11-95	15-11-96
	Gram	02-12-94	01-12-95	22-11-96	19-04-95	17-04-96	23-04-97

Table 2. Number of irrigation assigned to be given to crops under various irrigation levels

Crop	Optimum	Sub- optimum	Sub-Sub optimum
Cotton	4	2	0
Wheat	4	2	0
Barley	3	2	0
Sunflowe	er 8	6	4
Gram	2	1	0

Sunflower: During 1994-95 and 1995-96, sub-optimal irrigation significantly reduced the grain yield to 807 and 814 kg/ha as compared to 1114 and 973 kg/ha under optimal irrigation, respectively. The sub-sub-optimal irrigation further reduced the yield to 478 kg/ha as compared to 807 kg/ha under sub optimal regime during 1994-95.

Gram: During 1994-95, sub-optimal irrigation regimes reduced the grain yield to 588 kg/ha as compared to optimal regime (709 kg/ha) during

Table 3. Yields of crops in different sequences under different irrigation levels during the three years

Crop			Yield (kg/ha)					
(sequence)	·		1994-95	1995-96	1996-97	Mean		
Cotton-wheat	Cotton	O SO SSO LSD (.05)	2051 1875 1714 ns	1733 1679 1663 ns	1783 1776 1397 243	1856 1777 1591		
	Wheat	O SO SSO LSD (.05)	3495 2675 2850 537	3358 3304 2350 ns	2566 2409 1637 ns	3340 3004 2130		
Cotton-barley	Cotton	0 SO SSO LSD (.05)	2077 2044 1906 ns	1672 1525 1504 ns	1683 1682 1390 ns	1800 1744 1600		
	Barley	0 S0 SS0	3415 3175 2262	2006 1881 2185	2875 2489 2174	2765 2515 2097		
Cotton-sunflower	Cotton	0 SO SSO LSD (.05)	1950 1901 1857 532	431 417 400 ns	757 694 712 ns	1046 1004 990		
	Sunflower	0 SO SSO LSD (.05)	1114 807 478 109	973 814 775 90	2015 1867 1609 ns	1367 1162 954		

Cotton-gram	Cotton	O SO SSO LSD (.05)	1956 1923 1824 ns	1883 1879 1858 ns	1687 1602 1578 ns	1842 1801 1753
	Gram	0 SO SSO LSD (.05)	709 588 493 96	1165 1008 560 273	468 441 158 163	781 679 404

Table 4. Mean (1994-95 to 1996-97) irrigation water applied, profile water use, water expense and water expense efficiency under different crop sequences

under different crop sequences							
Crop	Optimal	Sub- optimal	Sub-sub optimal				
Irrigation water applied, cm							
Cotton (all rota	25.0	15.0	0.0				
Wheat	25.0	15.0	5.0				
Barley	25.0	15.0	5.0				
Sunflower	52.5	40.0	27.5				
Gram	15.0	7.5	0.0				
	Profile water	use, cm					
Cotton	15.2	12.9	16.4				
Wheat	15.9	12.3	14.2				
Cotton	14.6	13.4	16.4				
Barley	8.8	10.9	11.3				
Cotton	14.1	12.8	17.6				
Sunflower	0.3	3.2	8.0				
Cotton	15.3	11.9	13.5				
Gram	14.5	15.6	13.6				
	Water expe	ense, cm					
Cotton	81.8	77,6	66.7				
Wheat	47.7	34.1	26.0				
Cotton	75.5	78.1	66.0				
Barley	40.3	32.7	23.1				
Cotton	82.5	77.1	67.8				
Sunflower	56.6	45.8	65.9				
Cotton	83.6	73.8	65.99				
Gram	36.3	29.9	20.4				
	Water expens	e efficienc	у				
Cotton	22.7	22.9	23.6				
Wheat	70	88.1	81.9				
Cotton	23.8	22.3	24.2				
Barley	68.6	76.9	90.8				
Cotton	22.0	24.4	26.6				
Gram	21.5	22.7	19.8				

1995-96 and 1996-97; sub-sub optimal irrigation regime reduced gram yield to 560 to 158 kg/ha, respectively as compared to 1008 and 441 kg/ha under sub optimal irrigation regime, respectively.

Water use parameters

Irrigation water applied: The mean irrigation applied (Table 4) to the cotton-wheat, cotton-barley, cotton-sunflower and cotton-gram was 42.5, 42.5. 70.0 and 32.5 cm under optimal, 30.0, 30.0, 55.0 and 22.5 cm under sub-optimal and 5.0, 5.0, 27.5 and 0.0 cm under sub-sub-optimal irrigations regimes, respectively. Thus irrigation water required was maximum for cotton-sunflower and minimum for cotton-gram.

Profile water use: The profile water use (table 4) of cotton-wheat ,cotton-barley, cotton- sunflower and cotton-gram was 31.1,23.4,14.4 anmd 29.8 cm under optimum: 25.2,24.3, 16.0 and 27.5 cm under the sub optimum and 30.6, 27.7, 25.6 and 27.1 cm under the sub-sub- optimum irrigation regimes, respectively. Thus under the optimum and sub optimum irrigation regimes, profile water use was minimum in cotton-sunflower sequence implying thereby its greater dependence on the applied water. But under the sub-sub-optimum irrigation regime, the profile water use increased considerably in this sequence because of high evapotranspiration demand and reduced irrigation water supply.

Water expense: In general, the water expense increased with the increase in irrigation water supply under all the crops. The water expense of cotton-wheat, cotton-barley, cotton-sunflower and cotton-gram was 129.5, 115.8, 139.1 and 119.9 cm under the optimum; 111.7, 110.8, 122.9 and 103.7 cm under the sub optimum; and 92.7, 89.1, 133.7 and 86.3 cm under the sub-sub-optimum irrigation regime, respectively. Cotton-sunflower needed maximum water expense under all the

Table 5. Economic returns (Rs/ha) of different crop sequences under different irrigation levels during the three years

Crop sequence	Irrigation	1994-95	1995-96	1996-97	Mean
Cotton-Wheat	0	33408	25245	20251	26302(203)
	SO	31128	24328	19658	25038(224)
	SSO	25870	20060	10505	18815(203)
Cotton-Barley	О	35404	18779	20075	24752(214)
•	SO	3423 5	16514	19082	23277(210)
	SSO	28052	17469	11568	19029(213)
Cotton-Sunflower	0	28180	1456	11304	12676(91)
	SO	24834	3187	9104	17217(140)
	SSO	28901	5081	2346	12110(114)
Cotton-Gram	0	289030	27071	12335	22598(188)
	SO	27080	25762	11025	21289(205)
	SSO	24311	21403	12448	19427(225)
LSD (.05)	Years	2898			
	Crop sequence	5654			
	Irrigation	NS			

Figures in parenthesis indicate returns per cm of water expense

irrigation regimes. The water expense of other sequences diminished in the order cotton-wheat, cotton-barley and cotton-gram.

Water expense efficiency: The water expense efficiency of the crops generally decreased with the increase in water supply from sub-sub-optimal to optimal level. Whereas marginal differences (22 to 26 kg/ha cm) were observed in the water expense efficiency of cotton in cotton- wheat, cotton-barley and cotton-gram, but that of cottonsunflower was drastically reduced to 12.7 -14.6 kg/ha-cm. Among rabi crops, water expense efficiency of wheat, barley, and sunflower showed noticeable differences with the change in irrigation level. Whereas the water expense efficiency of wheat and barley was maintained higher under sub sub optimal irrigation regime, that under sunflower and gram was virtually reduced. Sunflower is thus the most sensitive to water supply in this region.

Economic returns

The data (Table 5) revealed that cottonsunflower sequence yielded minimum returns. The mean economic return from cotton-barley and cotton-gram decreased subsequently as compared to that of cotton-wheat. The economic return also diminished with reduction in water supply from optimum to sub sub optimum. These returns per cm of water expense were minimum in cottonsunflower. These returns were Rs 214 /- under optimal irrigation to cotton-barley, Rs 224/- under sub optimal irrigation to cotton-wheat and Rs 225 /- under sub sub optimal irrigation to cotton-gram.

Considering the water use parameters and the economic returns from different crop sequences it could be concluded that cotton-barley can replace cotton-wheat under optimal and sub optimal irrigation regime and cotton-gram can replace it under sub sub optimal irrigation regime.

References

Bharambe, P.R., Sondge, V.D., Rodge, R.P. and Oza, S.R. 1990. Performance of different crop sequences under various levels of irrigation in vertisols. *Indian J.agric. Sci.* **60**: 402-405.

Sharma, B.R. and Rajput, A.L. 1990. Sustained rice productivity in eastern region of India through efficient water management techniques. *Indian J. Agron.* 35: 85-90.

Singh, C.J., Bhullar, M.S., Singh, C.B. and Aujla, M.S. 1996. Performance of different crop sequences under different levels of irrigation on aridisols of Punjab. Presented in the 2nd International Crop Science Congress, Nov. 17-24,1996, New Delhi, India.

Singh, G., Singh, V.P., Singh, O.P. and Singh, R.K. 1997. Production potential of various cropping systems in flood prone areas of eastern Uttar Pradesh. *Indian J. Agron.* 42: 9-12.